|
1. Ludwig, S. and A. Zarbock, Coronaviruses and SARS-CoV-2: A Brief Overview. Anesth Analg, 2020. 131(1): p. 93-96. 2. Li, Q., et al., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 2020. 382(13): p. 1199-1207. 3. Zhu, N., et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 2020. 382(8): p. 727-733. 4. Jin, Y., et al., Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 2020. 12(4). 5. Xu, Z., et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020. 8(4): p. 420-422. 6. Guan, W.J., et al., Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 2020. 382(18): p. 1708-1720. 7. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020. 395(10223): p. 497-506. 8. Khan, M., et al., COVID-19: A Global Challenge with Old History, Epidemiology and Progress So Far. Molecules, 2020. 26(1). 9. Xu, J., et al., Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 2020. 12(2). 10. Zhou, P., et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020. 579(7798): p. 270-273. 11. Zhao, J., W. Cui, and B.P. Tian, The Potential Intermediate Hosts for SARS-CoV-2. Front Microbiol, 2020. 11: p. 580137. 12. Frutos, R., et al., COVID-19: Time to exonerate the pangolin from the transmission of SARS-CoV-2 to humans. Infect Genet Evol, 2020. 84: p. 104493. 13. Asrani, P., et al., Guidelines and Safety Considerations in the Laboratory Diagnosis of SARS-CoV-2 Infection: A Prerequisite Study for Health Professionals. Risk Manag Healthc Policy, 2021. 14: p. 379-389. 14. Centers for Disease Control. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html. 15. World Health Organization. Available from: https://covid19.who.int/table. 16. Sokolowska, M., Outsmarting SARS-CoV-2 by empowering a decoy ACE2. Signal Transduct Target Ther, 2020. 5(1): p. 260. 17. Eastman, R.T., et al., Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent Sci, 2020. 6(5): p. 672-683. 18. Rentsch, C.T., et al., Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform. Lancet Rheumatol, 2021. 3(1): p. e19-e27. 19. Asrani, P., et al., Clinical features and mechanistic insights into drug repurposing for combating COVID-19. Int J Biochem Cell Biol, 2022. 142: p. 106114. 20. Khiali, S., E. Khani, and T. Entezari-Maleki, A Comprehensive Review of Tocilizumab in COVID-19 Acute Respiratory Distress Syndrome. J Clin Pharmacol, 2020. 60(9): p. 1131-1146. 21. Parums, D.V., Editorial: Tocilizumab, a Humanized Therapeutic IL-6 Receptor (IL-6R) Monoclonal Antibody, and Future Combination Therapies for Severe COVID-19. Med Sci Monit, 2021. 27: p. e933973. 22. Food & Drug administration. Available from: https://www.fda.gov/emergency-preparedness-and-response/counterterrorism-and-emerging-threats/coronavirus-disease-2019-covid-19. 23. Ashraf, M.U., et al., COVID-19 Vaccines (Revisited) and Oral-Mucosal Vector System as a Potential Vaccine Platform. Vaccines (Basel), 2021. 9(2). 24. van Doremalen, N., et al., ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020. 586(7830): p. 578-582. 25. Krammer, F., SARS-CoV-2 vaccines in development. Nature, 2020. 586(7830): p. 516-527. 26. Khan, S., et al., Emergence of a Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2: Biology and Therapeutic Options. J Clin Microbiol, 2020. 58(5). 27. Cui, J., F. Li, and Z.L. Shi, Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019. 17(3): p. 181-192. 28. Woo, P.C., et al., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol, 2012. 86(7): p. 3995-4008. 29. Forni, D., et al., Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol, 2017. 25(1): p. 35-48. 30. Meng, X., et al., Gordian Knot: Gastrointestinal lesions caused by three highly pathogenic coronaviruses from SARS-CoV and MERS-CoV to SARS-CoV-2. Eur J Pharmacol, 2021. 890: p. 173659. 31. Fehr, A.R. and S. Perlman, Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 2015. 1282: p. 1-23. 32. Al-Horani, R.A., S. Kar, and K.F. Aliter, Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. Int J Mol Sci, 2020. 21(15). 33. Pišlar, A., et al., The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog, 2020. 16(11): p. e1009013. 34. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280.e8. 35. Matsuyama, S., et al., Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A, 2020. 117(13): p. 7001-7003. 36. Gomes, C.P., et al., Cathepsin L in COVID-19: From Pharmacological Evidences to Genetics. Front Cell Infect Microbiol, 2020. 10: p. 589505. 37. Peacock, T.P., et al., The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol, 2021. 6(7): p. 899-909. 38. V'Kovski, P., et al., Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol, 2021. 19(3): p. 155-170. 39. Harrison, A.G., T. Lin, and P. Wang, Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol, 2020. 41(12): p. 1100-1115. 40. Kirtipal, N., S. Bharadwaj, and S.G. Kang, From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol, 2020. 85: p. 104502. 41. Yan, R., et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020. 367(6485): p. 1444-1448. 42. Wrapp, D., et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020. 367(6483): p. 1260-1263. 43. Xu, H., et al., High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci, 2020. 12(1): p. 8. 44. Li, M.Y., et al., Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty, 2020. 9(1): p. 45. 45. Huang, N., et al., SARS-CoV-2 infection of the oral cavity and saliva. Nat Med, 2021. 27(5): p. 892-903. 46. Drozdzik, A. and M. Drozdzik, Oral Pathology in COVID-19 and SARS-CoV-2 Infection-Molecular Aspects. Int J Mol Sci, 2022. 23(3). 47. Patel, S., et al., Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother, 2017. 94: p. 317-325. 48. Yan, T., R. Xiao, and G. Lin, Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? Faseb j, 2020. 34(5): p. 6017-6026. 49. Mirabito Colafella, K.M., D.M. Bovée, and A.H.J. Danser, The renin-angiotensin-aldosterone system and its therapeutic targets. Exp Eye Res, 2019. 186: p. 107680. 50. Medina-Enríquez, M.M., et al., ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci, 2020. 10(1): p. 148. 51. Gong, J., Y. Sun, and L. Xie, ACEI/ARB Drug Therapy in COVID-19 Patients: Yes Or No? J Transl Int Med, 2021. 9(1): p. 8-11. 52. Verdecchia, P., et al., The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med, 2020. 76: p. 14-20. 53. Banu, N., et al., Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci, 2020. 256: p. 117905. 54. Onweni, C.L., et al., ACEI/ARB therapy in COVID-19: the double-edged sword of ACE2 and SARS-CoV-2 viral docking. Crit Care, 2020. 24(1): p. 475. 55. Yang, G., et al., Effects of Angiotensin II Receptor Blockers and ACE (Angiotensin-Converting Enzyme) Inhibitors on Virus Infection, Inflammatory Status, and Clinical Outcomes in Patients With COVID-19 and Hypertension: A Single-Center Retrospective Study. Hypertension, 2020. 76(1): p. 51-58. 56. Fosbøl, E.L., et al., Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use With COVID-19 Diagnosis and Mortality. Jama, 2020. 324(2): p. 168-177. 57. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42. 58. Protein Data Bank. Available from: https://www.rcsb.org/structure/7knb. 59. Mehdipour, A.R. and G. Hummer, Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proc Natl Acad Sci U S A, 2021. 118(19). 60. Gong, Y., et al., The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther, 2021. 6(1): p. 396. 61. Grishin, A.M., et al., Disulfide Bonds Play a Critical Role in the Structure and Function of the Receptor-binding Domain of the SARS-CoV-2 Spike Antigen. J Mol Biol, 2022. 434(2): p. 167357. 62. Andersen, K.G., et al., The proximal origin of SARS-CoV-2. Nat Med, 2020. 26(4): p. 450-452. 63. Sahu, A.K., et al., SARS-CoV-2: phylogenetic origins, pathogenesis, modes of transmission, and the potential role of nanotechnology. Virusdisease, 2021. 32(1): p. 1-12. 64. Garcia-Beltran, W.F., et al., Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021. 184(9): p. 2372-2383.e9. 65. Hoffmann, M. and S. Pöhlmann, Novel SARS-CoV-2 receptors: ASGR1 and KREMEN1. Cell Res, 2022. 32(1): p. 1-2. 66. Gu, Y., et al., Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res, 2022. 32(1): p. 24-37. 67. Zhang, Q., et al., Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther, 2021. 6(1): p. 233. 68. Gu, Y., et al., Interaction network of SARS-CoV-2 with host receptome through spike protein. 2020: p. 2020.09.09.287508. 69. Xia, S., et al., Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res, 2020. 30(4): p. 343-355. 70. Yang, J., et al., Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun, 2020. 11(1): p. 4541.
|