跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.173) 您好!臺灣時間:2023/10/02 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范雅淇
研究生(外文):Fan, Ya-Chi
論文名稱:新型NTCP抑制劑dehydroeburicoic acid抑制D型肝炎病毒感染之探討
論文名稱(外文):Discovery of novel human NTCP inhibitor dehydroeburicoic acid on inhibition of hepatitis delta virus infection
指導教授:黃琤
指導教授(外文):Huang, Cheng
口試委員:黃尉倫李重霈
口試委員(外文):Hwang, Wei-LunLee, Chung-Pei
口試日期:2022-07-13
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:62
中文關鍵詞:D型肝炎病毒dehydroeburicoic acid鈉離子牛磺膽酸共轉運蛋白進入抑制劑基因轉殖小鼠
外文關鍵詞:Hepatitis D virusDehydroeburicoic acidSodium taurocholate cotransporting polypeptideEntry inhibitorhuman NTCP transgenic mice
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract iii
Table of contents iv
List of Figures and Table vii
Chapter 1 Introduction - 1 -
1.1 Hepatitis Delta virus (HDV) - 1 -
1.1.1 Virology of HDV - 1 -
1.1.2 Epidemiology of HDV - 1 -
1.1.3 HDV replication cycle - 2 -
1.1.4 HDV infection induced immune responses - 4 -
1.1.5 Diagnosis - 6 -
1.1.6 Clinical course of hepatitis D - 7 -
1.1.7 HDV inhibitors and therapies - 7 -
1.2 Sodium taurocholate cotransporting polypeptide (NTCP) - 8 -
1.2.1 The function of NTCP - 8 -
1.2.2 NTCP-expressing model for HDV infection - 9 -
1.3 Dehydroeburicoic acid (DA) - 10 -
Chapter 2 Specific aims - 11 -
Chapter 3 Material and Method - 12 -
3.1 Drugs - 12 -
3.2 Cell culture - 12 -
3.2.1 HepG2.2.15 cell line - 12 -
3.2.2 HuS-E/2 cell line - 12 -
3.2.3 HepG2-hNTCP-C4 cell line - 13 -
3.3 Cell viability assay (MTT assay) - 13 -
3.4 Preparation of HDV - 13 -
3.5 HDV infection - 14 -
3.6 Animal and animal model - 14 -
3.7 Mouse genotyping - 15 -
3.8 Total RNA extraction - 16 -
3.9 Quantitative real-time polymerase chain reaction (RT-qPCR) - 16 -
3.10 GST pull down assay - 17 -
3.11 Western blot analysis - 17 -
3.12 Antibodies - 18 -
3.13 Biochemical analysis - 18 -
3.14 Statistical analysis - 18 -
Chapter 4 Results - 19 -
4.1 Generation of HDV viral stock - 19 -
4.2 The molecular structure of DA and its cell toxicity in HuS-E/2 cells - 19 -
4.3 DA inhibited HDV infection in differentiated HuS-E/2 cells - 20 -
4.4 DA block HDV infection in HepG2-hNTCP-C4 cells - 20 -
4.5 The effect of DA and its analogs on HDV infection in dHuS-E/2 cells - 21 -
4.6 DA suppress HDV infection at different stage of HDV infection - 21 -
4.7 DA interferes the early entry phase of HDV entry - 22 -
4.8 DA blocked the interaction between hNTCP and LHBsAg1-111 - 22 -
4.9 The hNTCP-cre Transgenic mice model - 23 -
4.10 hNTCP expression and the susceptibility to HDV infection in hNTCP-cre Transgenic mice - 23 -
4.11 DA inhibited HDV infection in hNTCP-cre Transgenic mice - 24 -
4.12 The effect of DA on body weight, liver weight, and liver function in hNTCP-cre transgenic mice - 25 -
4.13 The innate immune response of hNTCP-cre transgenic mice - 25 -
Chapter 5 Discussion and Conclusion - 27 -
5.1 Discussion - 27 -
5.2 Conclusion - 32 -
Supplementary Information - 53 -
Reference - 54 -
1. Wedemeyer, H. and M.P. Manns, Epidemiology, pathogenesis and management of hepatitis D: update and challenges ahead. Nat Rev Gastroenterol Hepatol, 2010. 7(1): p. 31-40.
2. Rizzetto, M., et al., delta Agent: association of delta antigen with hepatitis B surface antigen and RNA in serum of delta-infected chimpanzees. Proc Natl Acad Sci U S A, 1980. 77(10): p. 6124-8.
3. He, L.F., et al., The size of the hepatitis delta agent. J Med Virol, 1989. 27(1): p. 31-3.
4. Wang, K.S., et al., Structure, sequence and expression of the hepatitis delta (delta) viral genome. Nature, 1986. 323(6088): p. 508-14.
5. Lempp, F.A., Y. Ni, and S. Urban, Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol, 2016. 13(10): p. 580-9.
6. Schweitzer, A., et al., Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet, 2015. 386(10003): p. 1546-55.
7. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017. 390(10100): p. 1211-1259.
8. Chen, H.Y., et al., Prevalence and burden of hepatitis D virus infection in the global population: a systematic review and meta-analysis. Gut, 2019. 68(3): p. 512-521.
9. Sureau, C. and F. Negro, The hepatitis delta virus: Replication and pathogenesis. J Hepatol, 2016. 64(1 Suppl): p. S102-s116.
10. Miao, Z., et al., Estimating the Global Prevalence, Disease Progression, and Clinical Outcome of Hepatitis Delta Virus Infection. J Infect Dis, 2020. 221(10): p. 1677-1687.
11. Fattovich, G., et al., Influence of hepatitis delta virus infection on progression to cirrhosis in chronic hepatitis type B. J Infect Dis, 1987. 155(5): p. 931-5.
12. Yurdaydın, C., et al., Natural history and treatment of chronic delta hepatitis. J Viral Hepat, 2010. 17(11): p. 749-56.
13. Romeo, R., et al., A 28-year study of the course of hepatitis Delta infection: a risk factor for cirrhosis and hepatocellular carcinoma. Gastroenterology, 2009. 136(5): p. 1629-38.
14. Niro, G.A., et al., Outcome of chronic delta hepatitis in Italy: a long-term cohort study. J Hepatol, 2010. 53(5): p. 834-40.
15. Koh, C., T. Heller, and J.S. Glenn, Pathogenesis of and New Therapies for Hepatitis D. Gastroenterology, 2019. 156(2): p. 461-476.e1.
16. Stockdale, A.J., et al., The global prevalence of hepatitis D virus infection: Systematic review and meta-analysis. J Hepatol, 2020. 73(3): p. 523-532.
17. Schieck, A., et al., Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts. Hepatology, 2013. 58(1): p. 43-53.
18. Verrier, E.R., et al., A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology, 2016. 63(1): p. 35-48.
19. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 3.
20. Ni, Y., et al., Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 2014. 146(4): p. 1070-83.
21. Chou, H.C., et al., Hepatitis delta antigen mediates the nuclear import of hepatitis delta virus RNA. J Virol, 1998. 72(5): p. 3684-90.
22. Tavanez, J.P., et al., Hepatitis delta virus ribonucleoproteins shuttle between the nucleus and the cytoplasm. Rna, 2002. 8(5): p. 637-46.
23. Hwang, S.B. and M.M. Lai, Isoprenylation mediates direct protein-protein interactions between hepatitis large delta antigen and hepatitis B virus surface antigen. J Virol, 1993. 67(12): p. 7659-62.
24. Sureau, C., B. Guerra, and R.E. Lanford, Role of the large hepatitis B virus envelope protein in infectivity of the hepatitis delta virion. J Virol, 1993. 67(1): p. 366-72.
25. Gudima, S., et al., Assembly of hepatitis delta virus: particle characterization, including the ability to infect primary human hepatocytes. J Virol, 2007. 81(7): p. 3608-17.
26. Wu, M., et al., Hepatitis B virus polymerase inhibits the interferon-inducible MyD88 promoter by blocking nuclear translocation of Stat1. J Gen Virol, 2007. 88(Pt 12): p. 3260-3269.
27. Cho, I.R., et al., Hepatitis B virus X protein inhibits extracellular IFN-α-mediated signal transduction by downregulation of type I IFN receptor. Int J Mol Med, 2012. 29(4): p. 581-6.
28. Xu, F., et al., HBsAg blocks TYPE I IFN induced up-regulation of A3G through inhibition of STAT3. Biochem Biophys Res Commun, 2016. 473(1): p. 219-223.
29. Hou, Z.H., et al., miR146a impairs the IFN-induced anti-HBV immune response by downregulating STAT1 in hepatocytes. Liver Int, 2014. 34(1): p. 58-68.
30. Jung, S., S.M. Altstetter, and U. Protzer, Innate immune recognition and modulation in hepatitis D virus infection. World J Gastroenterol, 2020. 26(21): p. 2781-2791.
31. Alfaiate, D., et al., HDV RNA replication is associated with HBV repression and interferon-stimulated genes induction in super-infected hepatocytes. Antiviral Res, 2016. 136: p. 19-31.
32. Medzhitov, R. and C. Janeway, Jr., Innate immunity. N Engl J Med, 2000. 343(5): p. 338-44.
33. Jain, A. and C. Pasare, Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. J Immunol, 2017. 198(10): p. 3791-3800.
34. Wang, L., K. Wang, and Z.Q. Zou, Crosstalk between innate and adaptive immunity in hepatitis B virus infection. World J Hepatol, 2015. 7(30): p. 2980-91.
35. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-45.
36. Rehwinkel, J. and M.U. Gack, RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol, 2020. 20(9): p. 537-551.
37. Yoneyama, M., et al., Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol, 2015. 32: p. 48-53.
38. Karimzadeh, H., et al., Amino Acid Substitutions within HLA-B*27-Restricted T Cell Epitopes Prevent Recognition by Hepatitis Delta Virus-Specific CD8(+) T Cells. J Virol, 2018. 92(13).
39. Karimzadeh, H., et al., Mutations in Hepatitis D Virus Allow It to Escape Detection by CD8(+) T Cells and Evolve at the Population Level. Gastroenterology, 2019. 156(6): p. 1820-1833.
40. Wursthorn, K., M.P. Manns, and H. Wedemeyer, Natural history: the importance of viral load, liver damage and HCC. Best Pract Res Clin Gastroenterol, 2008. 22(6): p. 1063-79.
41. Negro, F., Hepatitis D virus coinfection and superinfection. Cold Spring Harb Perspect Med, 2014. 4(11): p. a021550.
42. König, A., et al., Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J Hepatol, 2014. 61(4): p. 867-75.
43. Slijepcevic, D. and S.F. van de Graaf, Bile Acid Uptake Transporters as Targets for Therapy. Dig Dis, 2017. 35(3): p. 251-258.
44. Donkers, J.M., M.D. Appelman, and S.F.J. van de Graaf, Mechanistic insights into the inhibition of NTCP by myrcludex B. JHEP Rep, 2019. 1(4): p. 278-285.
45. Slijepcevic, D., et al., Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology, 2017. 66(5): p. 1631-1643.
46. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1: p. e00049.
47. Urban, S., et al., Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology, 2014. 147(1): p. 48-64.
48. Huang, H.C., et al., Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol, 2012. 86(17): p. 9443-53.
49. Muenzner, J., et al., Cellular and viral peptides bind multiple sites on the N-terminal domain of clathrin. Traffic, 2017. 18(1): p. 44-57.
50. Zhou, Y. and G. Simmons, Development of novel entry inhibitors targeting emerging viruses. Expert Rev Anti Infect Ther, 2012. 10(10): p. 1129-38.
51. Tu, T., et al., Hepatitis B Virus DNA Integration Occurs Early in the Viral Life Cycle in an In Vitro Infection Model via Sodium Taurocholate Cotransporting Polypeptide-Dependent Uptake of Enveloped Virus Particles. J Virol, 2018. 92(11).
52. Verrier, E.R., et al., Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection. Viruses, 2016. 8(9).
53. Allweiss, L. and M. Dandri, Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol, 2016. 64(1 Suppl): p. S17-s31.
54. Suárez-Amarán, L., et al., A new HDV mouse model identifies mitochondrial antiviral signaling protein (MAVS) as a key player in IFN-β induction. J Hepatol, 2017. 67(4): p. 669-679.
55. Deng, J.S., et al., Analgesic and anti-inflammatory bioactivities of eburicoic acid and dehydroeburicoic acid isolated from Antrodia camphorata on the inflammatory mediator expression in mice. J Agric Food Chem, 2013. 61(21): p. 5064-71.
56. Kuo, Y.H., C.H. Lin, and C.C. Shih, Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice. Int J Mol Sci, 2016. 17(6).
57. Yan, H., et al., Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol, 2014. 88(6): p. 3273-84.
58. Aly, H.H., et al., Serum-derived hepatitis C virus infectivity in interferon regulatory factor-7-suppressed human primary hepatocytes. J Hepatol, 2007. 46(1): p. 26-36.
59. Huang, H.C., et al., (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res, 2014. 111: p. 100-11.
60. Casillas, R., et al., Analysis of hepatitis B virus preS1 variability and prevalence of the rs2296651 polymorphism in a Spanish population. World J Gastroenterol, 2018. 24(6): p. 680-692.
61. Schulze, A., et al., Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J Virol, 2010. 84(4): p. 1989-2000.
62. Huang, H., et al., Ergosterol peroxide inhibits HBV infection by inhibiting the binding of the pre-S1 domain of LHBsAg to NTCP. Antiviral Res, 2021. 195: p. 105184.
63. Wang, C.J., et al., Small-form hepatitis B surface antigen is sufficient to help in the assembly of hepatitis delta virus-like particles. J Virol, 1991. 65(12): p. 6630-6.
64. Huang, H.C., et al., Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus. J Biol Chem, 2016. 291(50): p. 26226-26238.
65. Peña-Morán, O.A., et al., Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules, 2016. 21(8).
66. Indrayanto, G., G.S. Putra, and F. Suhud, Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst Excip Relat Methodol, 2021. 46: p. 273-307.
67. Iwamoto, M., et al., Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem Biophys Res Commun, 2014. 443(3): p. 808-13.
68. Režen, T., et al., The role of bile acids in carcinogenesis. Cell Mol Life Sci, 2022. 79(5): p. 243.
69. Chakraborty, A., et al., Synchronised infection identifies early rate-limiting steps in the hepatitis B virus life cycle. Cell Microbiol, 2020. 22(12): p. e13250.
70. Watashi, K., et al., Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology, 2014. 59(5): p. 1726-37.
71. Shimura, S., et al., Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol, 2017. 66(4): p. 685-692.
72. Yan, H., et al., Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol, 2013. 87(14): p. 7977-91.
73. Ganesan, N., et al., Antrodia cinnamomea-An updated minireview of its bioactive components and biological activity. J Food Biochem, 2019. 43(8): p. e12936.
74. Huang, G.J., et al., Hepatoprotective effects of eburicoic acid and dehydroeburicoic acid from Antrodia camphorata in a mouse model of acute hepatic injury. Food Chem, 2013. 141(3): p. 3020-7.
75. He, W., et al., Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide. PLoS Pathog, 2015. 11(4): p. e1004840.
76. Winer, B.Y., et al., Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med, 2018. 10(447).
77. Veloso Alves Pereira, I., et al., Primary biliary acids inhibit hepatitis D virus (HDV) entry into human hepatoma cells expressing the sodium-taurocholate cotransporting polypeptide (NTCP). PLoS One, 2015. 10(2): p. e0117152.
78. Baumert, T.F., et al., Entry of hepatitis B and C viruses - recent progress and future impact. Curr Opin Virol, 2014. 4: p. 58-65.
79. Li, H., et al., HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol Immunol, 2014. 11(2): p. 175-83.
80. Usai, C., et al., TNF-alpha inhibition ameliorates HDV-induced liver damage in a mouse model of acute severe infection. JHEP Rep, 2020. 2(3): p. 100098.
81. D'Souza, S., et al., Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol, 2020. 26(38): p. 5759-5783.
82. Kang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33.
83. Grabowski, J., et al., Hepatitis D virus-specific cytokine responses in patients with chronic hepatitis delta before and during interferon alfa-treatment. Liver Int, 2011. 31(9): p. 1395-405.
84. Bertino, G., et al., Chronic hepatitis C: This and the new era of treatment. World J Hepatol, 2016. 8(2): p. 92-106.
85. Greig, S.L. and E.D. Deeks, Abacavir/dolutegravir/lamivudine single-tablet regimen: a review of its use in HIV-1 infection. Drugs, 2015. 75(5): p. 503-14.
86. Chahine, E.B., A.J. Sucher, and B.A. Hemstreet, Sofosbuvir/Velpatasvir: The First Pangenotypic Direct-Acting Antiviral Combination for Hepatitis C. Ann Pharmacother, 2017. 51(1): p. 44-53.
87. Giersch, K., et al., Hepatitis delta virus persists during liver regeneration and is amplified through cell division both in vitro and in vivo. Gut, 2019. 68(1): p. 150-157.
電子全文 電子全文(網際網路公開日期:20270807)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top