跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳少芃
研究生(外文):Chen, Shao-Peng
論文名稱:發展適用於攝護腺癌放射治療療效評估之游離輻射調控液態檢測系統
論文名稱(外文):Developing a radiation-driven liquid-based detection system for predicting radiotherapy outcomes on prostate carcinoma
指導教授:莊惠燕
指導教授(外文):Chuang, Hui-Yen
口試委員:劉仁賢熊佩韋
口試委員(外文):Liu, Ren-ShyanShueng, Pei-Wei
口試日期:2022-07-29
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:生物醫學影像暨放射科學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:91
中文關鍵詞:放射治療治療效果追蹤合成生物探針液態生物檢體攝護腺癌
外文關鍵詞:RadiotherapyTreatment outcomes monitoringSynthetic biomarkersLiquid-based detectionProstate cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Acknowledgment i
Abstract (Chinese) ii
Abstract iii
Table of Contents iv
List of Figures viii
List of Tables x
Introduction 1
1. Radiotherapy and Tumor Monitoring 1
2. Liquid Biopsy 2
3. Exogenous Synthetic Biomarkers 4
4. Secreted Reporters 5
4.1 Human Chorionic Gonadotropin (hCG) 5
4.2 Gaussia Luciferase (GLuc) 6
5. Radiation-Responsive Signaling Pathways 6
5.1 TGF-β/Smad Pathway 7
5.2 NRF2/Antioxidant Response Element (ARE) Pathway 8
5.3 EGR-1/Serum Response Elements (SRE) Pathway 9
6. Prostate Cancer 9
Materials and Methods 12
1. Cell Lines 12
2. Western Blotting 12
3. Cytotoxicity of Ionizing Radiation (MTT Assay and CCK-8 Assay) 13
4. Irradiation Procedure 14
5. Transient Transfection 14
6. IR-Responsive Plasmids Construction 15
7. Establishment of IR-Responsive Stable Clones 16
8. Luciferase Assay 17
9. ELISA Enzyme-linked immunosorbent assay (ELISA) 19
10. Establish IR-Resistant Prostate Cancer Cell Lines 20
11. Statistics 20
Results 21
1. Ionizing radiation activates radiation-responsive protein expressions in prostate cancer cells. 21
2. Cell viabilities of prostate cancer cells are decreased in a dose-dependent manner after IR treatment. 23
3. Smad binding elements (SBE) can function as an IR-responsive promoter. 24
4. Establishment of constructs encoding the secreted reporter hCG and GLuc driven by the IR-responsive promoter. 25
5. IR-responsive constructs can respond to IR, and the resulting signals could correlate with the IR-induced cytotoxicity effect in 293FT cells. 26
6. IR-responsive prostate cancer cells exhibit a high correlation between secreted biomarker levels and RT outcomes. 27
7. IR-resistant prostate cancer cells respond to IR differently compared to parental prostate cancer cells, as shown in IR-responsive protein expressions. 29
Discussion 30
Conclusions 38
References 39
Figures 52
Tables 74
Appendices 78
1. Cell Lines 78
2. Cell Culture 78
3. Chemicals, Reagents, and Antibodies 78
4. Equipment 80
5. Software 81
Supplementary 1. Mechanism of IR in TGF-β/Smad signaling pathway. IR-inducing DNA double-strand breaks are detected by ATM activation. 82
Supplementary 2. Mechanism of IR in NRF2/Antioxidant Response Element (ARE) signaling pathway. 83
Supplementary 3. Mechanism of IR in EGR-1/Serum Response Elements (SRE) signaling pathway. 84
Supplementary 4. Mechanisms of ROS production, and cellular response to ROS in prostate cells. 85
Supplementary 5. Crosstalk between TGF-β and ROS. 86
Supplementary 6. Transcriptional activities of NF-κB-Luc2P and E9-FLuc 2 to 24 hours after single-dose irradiation. 87
Supplementary 7. Strategies of using genetically encoded synthetic biomarkers leverage tumor-specificity to achieve detectable signals. 88
Supplementary 8. Vector map of the pCDH-EF1S-hCG-P2A-copGFP-T2A-puro with agarose gel electrophoresis to confirm the production of the constructed products. 89
Supplementary 9. Vector map of the pCDH-EF1S-hCG-P2A-Gluc-T2A-puro with agarose gel electrophoresis to confirm the production of the constructed products. 90
Supplementary 10. Vector map of the pCDH-EF1S-Nluc-P2A-mCherryT2A-puro with agarose gel electrophoresis to confirm the production of the constructed products. 91
1. Baskar, R., Lee, K.A., Yeo, R. & Yeoh, K.W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9, 193-199 (2012).
2. Fass, L. Imaging and cancer: a review. Mol Oncol 2, 115-152 (2008).
3. Rusthoven, K.E. et al. Favorable prognosis in patients with high-grade glioma with radiation necrosis: the University of Colorado reoperation series. Int J Radiat Oncol Biol Phys 81, 211-217 (2011).
4. Adams, H.J.A. et al. Prognostic value of tumor necrosis at CT in diffuse large B-cell lymphoma. Eur J Radiol 84, 372-377 (2015).
5. Singh, P. & Anil, G. Yttrium-90 radioembolization of liver tumors: what do the images tell us? Cancer Imaging 13, 645-657 (2014).
6. Kim, Y.H. et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 112, 758-765 (2010).
7. Gao, L., Xu, W., Li, T., Zheng, J. & Chen, G. Accuracy of 11C-choline positron emission tomography in differentiating glioma recurrence from radiation necrosis: A systematic review and meta-analysis. Medicine (Baltimore) 97, e11556 (2018).
8. Takenaka, S. et al. Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo) 54, 280-289 (2014).
9. Pijl, J.P. et al. Limitations and Pitfalls of FDG-PET/CT in Infection and Inflammation. Semin Nucl Med 51, 633-645 (2021).
10. Roschewski, M. et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol 16, 541-549 (2015).
11. Uchida, J. et al. Diagnostic Accuracy of Noninvasive Genotyping of EGFR in Lung Cancer Patients by Deep Sequencing of Plasma Cell-Free DNA. Clin Chem 61, 1191-1196 (2015).
12. Martins, I. et al. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes (Basel) 12 (2021).
13. Hernandez, J. & Thompson, I.M. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 101, 894-904 (2004).
14. Cookson, M.S. et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol 177, 540-545 (2007).
15. Horwitz, E.M. et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis. J Urol 173, 797-802 (2005).
16. Renehan, A.G., Egger, M., Saunders, M.P. & O'Dwyer, S.T. Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. BMJ 324, 813 (2002).
17. Duffy, M.J. et al. Clinical utility of biochemical markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines. Eur J Cancer 39, 718-727 (2003).
18. Thakur, V., Mukherjee, U. & Kumar, K. Elevated serum cancer antigen 125 levels in advanced abdominal tuberculosis. Med Oncol 18, 289-291 (2001).
19. Calapre, L., Warburton, L., Millward, M. & Gray, E.S. Circulating tumour DNA (ctDNA) as a biomarker in metachronous melanoma and colorectal cancer- a case report. BMC Cancer 19, 1109 (2019).
20. Huang, C., Liu, S., Tong, X. & Fan, H. Extracellular vesicles and ctDNA in lung cancer: biomarker sources and therapeutic applications. Cancer Chemother Pharmacol 82, 171-183 (2018).
21. Pessoa, L.S., Heringer, M. & Ferrer, V.P. ctDNA as a cancer biomarker: A broad overview. Crit Rev Oncol Hematol 155, 103109 (2020).
22. Vandekerkhove, G. et al. Circulating Tumor DNA Abundance and Potential Utility in De Novo Metastatic Prostate Cancer. Eur Urol 75, 667-675 (2019).
23. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6, 224ra224 (2014).
24. Thierry, A.R. A Targeted Q-PCR-Based Method for Point Mutation Testing by Analyzing Circulating DNA for Cancer Management Care. Methods Mol Biol 1392, 1-16 (2016).
25. Hori, S.S. & Gambhir, S.S. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci Transl Med 3, 109ra116 (2011).
26. Kwong, G.A. et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat Biotechnol 31, 63-70 (2013).
27. Chen, Y.Y. & Smolke, C.D. From DNA to targeted therapeutics: bringing synthetic biology to the clinic. Sci Transl Med 3, 106ps142 (2011).
28. Greenshpan, Y. et al. Synthetic promoters to induce immune-effectors into the tumor microenvironment. Commun Biol 4, 143 (2021).
29. Nishihara, T. et al. Beta-galactosidase-responsive synthetic biomarker for targeted tumor detection. Chem Commun (Camb) 54, 11745-11748 (2018).
30. D'Souza, A.L. et al. A strategy for blood biomarker amplification and localization using ultrasound. Proc Natl Acad Sci U S A 106, 17152-17157 (2009).
31. Browne, A.W. et al. Cancer screening by systemic administration of a gene delivery vector encoding tumor-selective secretable biomarker expression. PLoS One 6, e19530 (2011).
32. Warram, J.M., Borovjagin, A.V. & Zinn, K.R. A genetic strategy for combined screening and localized imaging of breast cancer. Mol Imaging Biol 13, 452-461 (2011).
33. Warram, J.M. et al. Systemic delivery of a breast cancer-detecting adenovirus using targeted microbubbles. Cancer Gene Ther 19, 545-552 (2012).
34. Ronald, J.A., Chuang, H.Y., Dragulescu-Andrasi, A., Hori, S.S. & Gambhir, S.S. Detecting cancers through tumor-activatable minicircles that lead to a detectable blood biomarker. Proc Natl Acad Sci U S A 112, 3068-3073 (2015).
35. Aalipour, A. et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat Biotechnol 37, 531-539 (2019).
36. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1-10 (1988).
37. Tannous, B.A., Kim, D.E., Fernandez, J.L., Weissleder, R. & Breakefield, X.O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11, 435-443 (2005).
38. Pham, L. et al. Concordant activity of transgene expression cassettes inserted into E1, E3 and E4 cloning sites in the adenovirus genome. J Gene Med 11, 197-206 (2009).
39. Cole, L.A. & Sutton, J.M. HCG tests in the management of gestational trophoblastic diseases. Clin Obstet Gynecol 46, 523-540 (2003).
40. Berkowitz, R.S. & Goldstein, D.P. Current management of gestational trophoblastic diseases. Gynecol Oncol 112, 654-662 (2009).
41. Kanazawa, K. et al. Establishment and characterization of a subline predisposed to pulmonary metastasis from a human gestational choriocarcinoma cell line in nude mice. Acta Obstet Gynecol Scand 68, 429-434 (1989).
42. Takahashi, Y., Ueno, M. & Mai, M. Establishment of a human chorionic gonadotropin-producing human gastric carcinoma in nude mice. J Surg Oncol 48, 96-100 (1991).
43. Shih, I.M. et al. Assessing tumors in living animals through measurement of urinary beta-human chorionic gonadotropin. Nat Med 6, 711-714 (2000).
44. Badr, C.E., Hewett, J.W., Breakefield, X.O. & Tannous, B.A. A highly sensitive assay for monitoring the secretory pathway and ER stress. PLoS One 2, e571 (2007).
45. Santos, E.B. et al. Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med 15, 338-344 (2009).
46. Chung, E. et al. Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS One 4, e8316 (2009).
47. Griesenbach, U. et al. Secreted Gaussia luciferase as a sensitive reporter gene for in vivo and ex vivo studies of airway gene transfer. Biomaterials 32, 2614-2624 (2011).
48. Hawkins, A.J., Golding, S.E., Khalil, A. & Valerie, K. DNA double-strand break - induced pro-survival signaling. Radiother Oncol 101, 13-17 (2011).
49. Raleigh, D.R. & Haas-Kogan, D.A. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol 9, 219-233 (2013).
50. Valerie, K. et al. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6, 789-801 (2007).
51. Scott, S.D., Joiner, M.C. & Marples, B. Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Gene Ther 9, 1396-1402 (2002).
52. Worthington, J. et al. Modification of vascular tone using iNOS under the control of a radiation-inducible promoter. Gene Ther 7, 1126-1131 (2000).
53. Nuyts, S. et al. Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther 8, 1197-1201 (2001).
54. Nenoi, M., Daino, K., Ichimura, S., Takahash, S. & Akuta, T. Low-dose radiation response of the p21WAF1/CIP1 gene promoter transduced by adeno-associated virus vector. Exp Mol Med 38, 553-564 (2006).
55. Principe, D.R. et al. TGF-beta: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 106, djt369 (2014).
56. Padua, D. & Massague, J. Roles of TGFbeta in metastasis. Cell Res 19, 89-102 (2009).
57. Pardali, K. & Moustakas, A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775, 21-62 (2007).
58. Carl, C. et al. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway. Cell Mol Life Sci 73, 427-443 (2016).
59. Zhou, Y.C. et al. Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int J Radiat Oncol Biol Phys 81, 1530-1537 (2011).
60. Pandita, T.K. et al. Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene 19, 1386-1391 (2000).
61. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14, 197-210 (2013).
62. Li, Y. et al. DNA Damage Activates TGF-beta Signaling via ATM-c-Cbl-Mediated Stabilization of the Type II Receptor TbetaRII. Cell Rep 28, 735-745 e734 (2019).
63. Shi, M. et al. Latent TGF-beta structure and activation. Nature 474, 343-349 (2011).
64. Ramundo, V., Giribaldi, G. & Aldieri, E. Transforming Growth Factor-beta and Oxidative Stress in Cancer: A Crosstalk in Driving Tumor Transformation. Cancers (Basel) 13 (2021).
65. Martin, M. et al. Coactivation of AP-1 activity and TGF-beta1 gene expression in the stress response of normal skin cells to ionizing radiation. Oncogene 15, 981-989 (1997).
66. O'Malley, Y., Zhao, W., Barcellos-Hoff, M.H. & Robbins, M.E. Radiation-induced alterations in rat mesangial cell Tgfb1 and Tgfb3 gene expression are not associated with altered secretion of active Tgfb isoforms. Radiat Res 152, 622-628 (1999).
67. Dancea, H.C., Shareef, M.M. & Ahmed, M.M. Role of Radiation-induced TGF-beta Signaling in Cancer Therapy. Mol Cell Pharmacol 1, 44-56 (2009).
68. Frederick, J.P., Liberati, N.T., Waddell, D.S., Shi, Y. & Wang, X.F. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 24, 2546-2559 (2004).
69. Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1, 611-617 (1998).
70. Yagi, K. et al. Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J Biol Chem 274, 703-709 (1999).
71. Neefjes, M. et al. Reporter gene comparison demonstrates interference of complex body fluids with secreted luciferase activity. Sci Rep 11, 1359 (2021).
72. McMahon, M., Itoh, K., Yamamoto, M. & Hayes, J.D. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278, 21592-21600 (2003).
73. Hayes, J.D., Dinkova-Kostova, A.T. & Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 38, 167-197 (2020).
74. Ohta, T. et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68, 1303-1309 (2008).
75. Ikeda, H., Nishi, S. & Sakai, M. Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. Biochem J 380, 515-521 (2004).
76. Kim, Y.J. et al. Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology. Cancer Res 67, 546-554 (2007).
77. Zhou, S., Ye, W., Shao, Q., Zhang, M. & Liang, J. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol 88, 706-715 (2013).
78. Qin, S. et al. Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair. Free Radic Biol Med 169, 238-247 (2021).
79. McDonald, J.T. et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res 70, 8886-8895 (2010).
80. Ahmed, M.M. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors. Curr Cancer Drug Targets 4, 43-52 (2004).
81. Schwachtgen, J.L., Campbell, C.J. & Braddock, M. Full promoter sequence of human early growth response factor-1 (Egr-1): demonstration of a fifth functional serum response element. DNA Seq 10, 429-432 (2000).
82. Datta, R. et al. Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc Natl Acad Sci U S A 89, 10149-10153 (1992).
83. Marples, B. et al. Development of synthetic promoters for radiation-mediated gene therapy. Gene Ther 7, 511-517 (2000).
84. Greco, O. et al. Hypoxia- and radiation-activated Cre/loxP 'molecular switch' vectors for gene therapy of cancer. Gene Ther 13, 206-215 (2006).
85. Siegel, R.L., Miller, K.D., Fuchs, H.E. & Jemal, A. Cancer statistics, 2022. CA Cancer J Clin 72, 7-33 (2022).
86. Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur Urol 64, 876-892 (2013).
87. Astrom, L., Sandin, F. & Holmberg, L. Good prognosis following a PSA bounce after high dose rate brachytherapy and external radiotherapy in prostate cancer. Radiother Oncol 129, 561-566 (2018).
88. Urabe, F. et al. Prognostic value of PSA bounce in prostate cancer following definitive radiation therapy: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 24, 976-985 (2021).
89. Burchardt, W. & Skowronek, J. Time to PSA rise differentiates the PSA bounce after HDR and LDR brachytherapy of prostate cancer. J Contemp Brachytherapy 10, 1-9 (2018).
90. Critz, F.A. et al. Prostate specific antigen bounce after simultaneous irradiation for prostate cancer: the relationship to patient age. J Urol 170, 1864-1867 (2003).
91. Soletormos, G. et al. Biological variation of total prostate-specific antigen: a survey of published estimates and consequences for clinical practice. Clin Chem 51, 1342-1351 (2005).
92. Shariat, S.F., Canto, E.I., Kattan, M.W. & Slawin, K.M. Beyond prostate-specific antigen: new serologic biomarkers for improved diagnosis and management of prostate cancer. Rev Urol 6, 58-72 (2004).
93. D'Amico, A.V., Chen, M.H., Renshaw, A.A., Loffredo, M. & Kantoff, P.W. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA 299, 289-295 (2008).
94. Jones, C.U. et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med 365, 107-118 (2011).
95. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med 360, 2516-2527 (2009).
96. Mottet, N., Peneau, M., Mazeron, J.J., Molinie, V. & Richaud, P. Addition of radiotherapy to long-term androgen deprivation in locally advanced prostate cancer: an open randomised phase 3 trial. Eur Urol 62, 213-219 (2012).
97. Nabid, A. et al. Duration of Androgen Deprivation Therapy in High-risk Prostate Cancer: A Randomized Phase III Trial. Eur Urol 74, 432-441 (2018).
98. Dasu, A. Is the alpha/beta value for prostate tumours low enough to be safely used in clinical trials? Clin Oncol (R Coll Radiol) 19, 289-301 (2007).
99. Dasu, A. & Toma-Dasu, I. Prostate alpha/beta revisited -- an analysis of clinical results from 14 168 patients. Acta Oncol 51, 963-974 (2012).
100. van Leeuwen, C.M. et al. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 13, 96 (2018).
101. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343-345 (2009).
102. MacGrogan, D., Pegram, M., Slamon, D. & Bookstein, R. Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene 15, 1111-1114 (1997).
103. van Bokhoven, A. et al. Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205-225 (2003).
104. Song, K., Wang, H., Krebs, T.L., Kim, S.J. & Danielpour, D. Androgenic control of transforming growth factor-beta signaling in prostate epithelial cells through transcriptional suppression of transforming growth factor-beta receptor II. Cancer Res 68, 8173-8182 (2008).
105. Cao, Z. & Kyprianou, N. Mechanisms navigating the TGF-beta pathway in prostate cancer. Asian J Urol 2, 11-18 (2015).
106. Khandrika, L., Kumar, B., Koul, S., Maroni, P. & Koul, H.K. Oxidative stress in prostate cancer. Cancer Lett 282, 125-136 (2009).
107. Liu, R.M. & Gaston Pravia, K.A. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 48, 1-15 (2010).
108. Annes, J.P., Munger, J.S. & Rifkin, D.B. Making sense of latent TGFbeta activation. J Cell Sci 116, 217-224 (2003).
109. Chaiswing, L., Weiss, H.L., Jayswal, R.D., Clair, D.K.S. & Kyprianou, N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 23, 39-67 (2018).
110. Osborn, L., Kunkel, S. & Nabel, G.J. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A 86, 2336-2340 (1989).
111. Janus, P. et al. Pro-inflammatory cytokine and high doses of ionizing radiation have similar effects on the expression of NF-kappaB-dependent genes. Cell Signal 46, 23-31 (2018).
112. Hsieh, Y.J. et al. Demonstration of Tightly Radiation-Controlled Molecular Switch Based on CArG Repeats by In Vivo Molecular Imaging. Mol Imaging Biol 17, 802-810 (2015).
113. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57-70 (2000).
114. Vichalkovski, A., Gresko, E., Hess, D., Restuccia, D.F. & Hemmings, B.A. PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene 29, 3554-3565 (2010).
115. Kwong, G.A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 21, 655-668 (2021).
116. Li, C. et al. MR molecular imaging of tumors based on an optimal hTERT promoter tyrosinase expression system. Oncotarget 7, 42474-42484 (2016).
117. Wang, T., Chen, Y. & Ronald, J.A. A novel approach for assessment of prostate cancer aggressiveness using survivin-driven tumour-activatable minicircles. Gene Ther 26, 177-186 (2019).
電子全文 電子全文(網際網路公開日期:20270823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊