跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭智仁
研究生(外文):Cheng, Chih-Jen
論文名稱:基於奇異值控制與距離整合之三維物件偵測
論文名稱(外文):SVDnet: Singular Value Control and Distance Alignment Network for 3D Object Detection
指導教授:黃敬群黃敬群引用關係
指導教授(外文):Huang, Ching-Chun
口試委員:賴尚宏林彥宇帥宏翰
口試委員(外文):Lai, Shang-HongLin, Yen-YuShuai, Hong-Han
口試日期:2021-10-27
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:36
中文關鍵詞:點雲物件偵測自駕車
外文關鍵詞:Point Cloud3D object detectionAutonomous Vehicle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 i
中文摘要 ii
英文摘要 iii
目 錄 iv
圖 目 錄 vi
表 目 錄 vii
Chapter 1 1
Research Overview 1
1.1 Introduction 1
1.2 Contribution 4
Chapter 2 5
Related Works 5
2.1 Overall 5
2.2 Feature extraction methods of a point cloud 5
2.3 LiDAR-based 3D object detection 6
Chapter 3 8
Proposed Method 8
3.1 Overall 8
3.2 Pillar-based methods: fundamental and variant 8
3.3 SVDnet 9
3.4 Rank loss 10
3.5 Distance alignment ratio generation network (DARN) 11
3.6 Position attention 12
3.7 Loss function 12
Chapter 4 14
Experimental Results 14
4.1 Overall 14
4.2 Dataset 14
4.3 Implementation Details 15
4.4 Quantitative Analysis and Comparison 18
4.5 In-depth Analysis 21
4.5.1 Analysis of DARN 21
4.5.2 Analysis of DARN 21
4.5.2 Analysis of the choice of multi-scale features 26
4.6 Ablation studies and hyperparameter setting 26
4.7 Cyclist and pedestrian detection results 29
Chapter 5 33
Conclusion 33
References 34
[1] T. Br u¨digam, M. Olbrich, D. Wollherr, and M. Leibold, “Stochastic model predictive control with a safety guarantee for automated driving,” IEEE Transactions on Intelligent Vehicles, 2021.

[2] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochen- derfer, “Combining planning and deep reinforcement learning in tactical decision making for autonomous driving,” IEEE transactions on intelli- gent vehicles, vol. 5, no. 2, pp. 294–305, 2019.

[3] W. Zheng, W. Tang, L. Jiang, and C.-W. Fu, “Se-ssd: Self-ensembling single-stage object detector from point cloud,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14 494–14 503.

[4] W. Zheng, W. Tang, S. Chen, L. Jiang, and C.-W. Fu, “Cia-ssd: Confident iou-aware single-stage object detector from point cloud,” arXiv preprint arXiv:2012.03015, 2020.

[5] S. Vora, A. H. Lang, B. Helou, and O. Beijbom, “PointPainting: Sequen- tial fusion for 3D object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4604–4612.

[6] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “PointPillars: Fast encoders for object detection from point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12 697–12 705.

[7] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse convolutional neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 806–814.

[8] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural net- work for real-time object recognition,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 922–928.

[9] T.-Y. Lin, P. Doll a´r, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[11] C. Zhu, K. Xu, S. Chaudhuri, L. Yi, L. J. Guibas, and H. Zhang, “AdaCoSeg: Adaptive Shape Co-Segmentation With Group Consistency Loss,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8543–8552.

[12] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo, J. Ngiam, and V. Vasudevan, “End-to-end multi-view fusion for 3D object detection in lidar point clouds,” in Conference on Robot Learning. PMLR, 2020, pp. 923–932

[13] Y. Wang, A. Fathi, A. Kundu, D. Ross, C. Pantofaru, T. Funkhouser, and J. Solomon, “Pillar-based object detection for autonomous driving,” arXiv preprint arXiv:2007.10323, 2020.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660.

[15] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3D object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4490–4499.

[16] S. Shi, X. Wang, and H. Li, “PointRCNN: 3D object proposal generation and detection from point cloud,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 770– 779.

[17] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, “STD: Sparse-to-dense 3D object detector for point cloud,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1951–1960.

[18] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3DSSD: Point-based 3D single stage object detector,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 040–11 048.

[19] Y. Chen, S. Liu, X. Shen, and J. Jia, “Fast Point R-CNN,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9775–9784.

[20] Q. Chen, L. Sun, Z. Wang, K. Jia, and A. Yuille, “Object as hotspots: An anchor-free 3D object detection approach via firing of hotspots,” in European Conference on Computer Vision. Springer, 2020, pp. 68–84.

[21] Z. Li, Y. Yao, Z. Quan, W. Yang, and J. Xie, “Sienet: Spatial information enhancement network for 3d object detection from point cloud,” arXiv preprint arXiv:2103.15396, 2021.
[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierar- chical feature learning on point sets in a metric space,” arXiv preprint arXiv:1706.02413, 2017.

[23] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh, “Polarnet: An improved grid representation for online lidar point clouds semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9601–9610.

[24] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” Acm Transactions On Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[25] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “PV- RCNN: Point-voxel feature set abstraction for 3D object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10 529–10 538.

[26] R. Yi, C. Zhu, P. Tan, and S. Lin, “Faces as lighting probes via unsupervised deep highlight extraction,” in Proceedings of the European Conference on computer vision (ECCV), 2018, pp. 317–333.

[27] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu, “Dynamic relu,” in European Conference on Computer Vision. Springer, 2020, pp. 351–367.

[28] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[29] Z. Wang, S. Ding, Y. Li, M. Zhao, S. Roychowdhury, A. Wallin, G. Sapiro, and Q. Qiu, “Range adaptation for 3d object detection in lidar,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0–0.

[30] L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding, and S. Wen, “Associate- 3ddet: Perceptual-to-conceptual association for 3d point cloud object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 13 329–13 338.

[31] Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai, “Tanet: Robust 3d object detection from point clouds with triple attention,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 677–11 684.

[32] C. He, H. Zeng, J. Huang, X.-S. Hua, and L. Zhang, “Structure aware single-stage 3d object detection from point cloud,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 873–11 882.

[33] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Doll a´r, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.

[34] nutonomy, “second.pytorch,” https://github.com/nutonomy/second.pytorch, 2019.

[35] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmentation,” in ICCV, 2019.

[36] I. N. Stewart, Galois theory. CRC press, 2015.
電子全文 電子全文(網際網路公開日期:20241121)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top