跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝智鈞
研究生(外文):Hsieh, Chih-Chun
論文名稱:自動系統應用於腔外回授鏡調控Nd:YAG被動式Q開關雷射之鎖模研究
論文名稱(外文):Controlling the external feedback mirror with automatic system to study the mode-locking phenomena of passively Q-switched Nd:YAG solid-state laser
指導教授:蘇冠暐
指導教授(外文):Su, Kuan-Wei
口試委員:蘇冠暐黃凱風余彥廷
口試委員(外文):Su, Kuan-WeiHuang, Kai-FengYu, Yan-Ting
口試日期:2022-01-25
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:智慧與綠能產學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:89
中文關鍵詞:自動化腔外回授自鎖模Q開關雷射脈衝波形
外文關鍵詞:automationextracavity feedbackself-mode-locked Q-switched laserpulse shape
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
被動式Q開關固態雷射廣泛地應用在近代科學、醫學、工業界中,例如半導體元件量測、醫美手術、眼科雷射、微精密加工等。Q開關雷射雖可產生高功率的短脈衝,但伴隨鎖模使其峰值功率波動較大,提升峰值功率的穩定性與更精準地控制雷射系統為本論文目標,因此在不改變原共振腔的情況下,利用腔外回授鏡形成耦合共振腔去改變雷射狀態形成破壞性及增益性的鎖模,並有效控制鎖模深度進而調製出比原始雷射更穩定的無鎖模與增益性鎖模現象。開發一系列自動化軟體應用於雷射系統中,取代過去人工進行實驗,有效提升實驗效率並降低人為誤差及排除不穩定因子,透過自動化改變腔外回授鏡距離、角度,研究鎖模的脈衝波形、雷射能量、峰值功率間變化趨勢的關聯,定義出比以往更精準的破壞鎖模之區間和參數,為日後雷射系統結合人工智慧落實自動搜尋雷射最佳點來鋪路。
In modern science, medicine, and industry, passively Q-switched (PQS) lasers have been widely applied, such as measurement of semiconductor components, cosmetic surgery, ophthalmic lasers, and micro-precision machining. Although PQS lasers can generate short pulses with high power , the peak power fluctuates greatly with mode-locking. Therefore, improving the stability of peak power and controlling the laser system more accurately are the goals of this thesis. Without changing the original cavity, the external feedback mirror placed after laser output coupler is used to form the coupled cavity to modulate the laser states to generate destructive and constructive mode locking. Moreover, we successfully controlled the depth of mode locking to modulate a constructive mode-locking phenomenon which was more stable than the original laser, and a purely Q-switching phenomenon. In order to replace the manual experiments in the past, we have developed a series of automatic software applied in the laser system, which can effectively improve the experimental efficiency, reduce human errors and eliminate unstable factors. By automatically manipulating the distance and angle of the external feedback mirror, we studied the relationship between the mode-locking pulse shape, energy, and peak power. We successfully defined the intervals and parameters for destructive mode locking more precisely than ever. In the future, it will pave the way for laser system to combine artificial intelligence to automatically search for the best point of the laser.
中文摘要 i
Abstract ii
目錄 iii
圖表目錄 v
一、緒論 1
1.1 研究動機 1
1.2 論文架構 2
二、原理及研究方法 3
2.1 Nd:YAG晶體介紹 3
2.2 雷射原理 7
2.3 Q開關雷射機制 9
2.4 鎖模雷射 13
2.4.1 主動鎖模雷射 (Active mode-locking) 17
2.4.2 被動式鎖模雷射 (Passive mode-locking) 17
2.4.3 自發性鎖模雷射 (Spontaneous mode-locking) 18
三、實驗器材設備與方法 20
3.1 實驗器材設備 20
3.2 實驗方法 27
3.2.1 微調回授鏡角度方法 27
3.2.2 運用MATLAB分析波形鎖模深度 28
四、自動化控制腔外回授鏡於Q開關雷射系統 29
4.1 使用Kinesis於LabVIEW中控制設備 29
4.2 LabVIEW控制Nd:YAG雷射系統 38
4.3 自動記錄能量偵測器之量測值 45
4.4 偕同示波器自動擷取波形 48
五、利用腔外回授鏡控制Q開關雷射的鎖模現象 52
5.1 腔外回授鏡與輸出鏡的距離對Q開關雷射的影響 54
5.2 格柵式掃描與S型掃描之實驗結果 59
5.3 腔外回授鏡距離輸出鏡8公分處之破壞鎖模實驗 77
六、總結與未來工作 85
參考文獻 86
[1] W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, Ch. Werner, A. Mehnert, Th. Halldorsson, S. Heinemann, P. Peuser, N.P. Schmitt, “A diode-pumped Nd: YAG lidar for airborne cloud measurements,” Optics & Laser Technology, Volume 25, Issue 5 (1993).
[2] M. J. Tassignon, I. Kreissig, N. Stempels, M. Brihaye, “Indications for Q-Switched and Mode-Locked Nd: Yag Lasers in Vitreoretinal Pathology,” European Journal of Ophthalmology (1991).
[3] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
[4] D. J. Goldberg, J. Whitworth, “Laser skin resurfacing with the Q-switched Nd:YAG laser,” Dermatol Surg (1997).
[5] Lu, J., Prabhu, M., Song, J. et al. “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl Phys B 71, 469–473 (2000).
[6] Walter Koechner, Solid-State Laser Engineering, 6th edn, United States of America, Springer (2006).
[7] Yun-Shan Ku, “Enhancing peak-to-peak stability in passive Q-switching by avoiding self mode-locking effect,” National Chiao Tung University, thesis (2019).
[8] Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr :YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron.31, 1738–1741 (1995).
[9] Walter Koechner, Michael Bass, Solid-State Lasers: A Graduate Text, Springer-Verlag, New York (2003).
[10] Chih-Hung Wu, “Exploring Laser-induced Breakdown Threshold and Temporal Dynamics with Q-switched Mode-locked Nd:YAG Lasers,” National Chiao Tung University, thesis (2015).
[11] Y. F. Chen,” High-power diode-pumped actively Q-switched Nd:YVO4 self Raman laser :influence of dopant concentration,” Opt. Lett. 29,1915–1917 (2004).
[12] M. Skorczakowski, et al. “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7 498–504 (2010).
[13] I. W. Mackintosh, “Double Etalon Q Switching of a Continuously Pumped Nd/YAG Laser,” Appl. Opt. 8, 1991-1998 (1969).
[14] Y. F. Chen, Y. P. Lan, and S. W. Tsai, “High power diode pumped actively Q-switched Nd:YAG laser at 1123 nm,” Opt. Commun. 234 , 309 313 (2004).
[15] Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition rate dependence of thermal loading in diode end pumped Q-switched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
[16] Y. H. Chen and Y. C. Huang, “Actively Q switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28, 1460-1462 (2003).
[17] T. Li, S Zhao, Z Zhuo, K Yang , G Li, and D Li, “Dual loss modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18, 10315 10322 (2010).
[18] 楊寶賡,雷射工程,二版,新文京開發,新北市,民國一百零六年。
[19] Pin-Hsun Wang, “Using external feedback mirror to control mode-locked operation in a Q-switched Nd:YAG solid-state laser,” National Chiao Tung University, thesis (2020).
[20] Svelto, Orazio, Principles of Lasers, New York :Springer (2010).
[21] Guo-Wei Huang, “Yb:YAG Self-mode-locked Laser,” National Chiao Tung University, thesis (2012).
[22] K. Gürs and R. Müller, “Breitband-modulation durch steuerung der emission eines optischen masers,” Phys. Lett. 5, 179 (1963).
[23] L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4 (1964).
[24] S. E. Harris and R. Targ, "FM oscillation of the He-Ne laser," Appl. Phys. Lett. 5, 202 (1964).
[25] H. W. Mocker, R. J. Collins, “Mode competition and delf-locking effects in a Q-switched ruby laser,” Appl. Phys. Lett. 7, 270 (1965).
[26] E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348 (1972).
[27] C. V. Shank and E. P. Ippen, “sub-picosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373 (1974).
[28] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 43 (1991).
[29] G. P. A. Malcolm and A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16, 1967-1969 (1991).
[30] K. X. Liu, C. J. Flood, D. R. Walker, and H. M. van Driel, “Kerr lens mode locking a diode-pumped Nd:YAG laser,” Opt. Lett. 19, 1361-1363 (1992).
[31] A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, 390-392 (1994).
[32] Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self mode-locked Cr:forsterite laser,” Opt. Lett. 18, 1168-1170 (1993).
[33] P. M. W. French, R. Mellish, J. R. Teylor, P. J. Delfyett, and L. T. Florez, “Mode-locked all-solid-state diode-pumped Cr:LiSAF laser,” Opt. Lett. 18, 1934-1946 (1993).
[34] P. Li Kam Wa, B. H. T. Chai, and A. Miller, “Self-mode locked Cr3+:LiCaAlF 6 laser,” Opt. Lett. 17, 1438-1440 (1992).
[35] G.Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32, 2741–2743 (2007).
[36] Yu-Hsiang Huang, “Manipulating mode-locking phenomena of passive Q-Switched pulses from a flash-lamp-pumped Nd:YAG laser with controlling external feedback mirror”, National Chiao Tung University, thesis (2020).
[37] Woodward, R. I. and Kelleher, E. J. R. “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616; doi: 10.1038/srep37616 (2016).
[38] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” in Neural Computation, vol. 9, no. 8, pp. 1735-1780, 15 Nov. 1997, doi: 10.1162/neco (1997).
[39] Chang Sun1, Eurika Kaiser, Steven L Brunton, and J Nathan Kutz, “Deep reinforcement learning for optical systems: A case study of mode-locked lasers,” Machine Learning: Science and Technology (2020).
電子全文 電子全文(網際網路公開日期:20250307)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top