跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張潔妙
研究生(外文):Chang, Chieh-Miao
論文名稱:智慧型新生兒血液灌注評估系統設計
論文名稱(外文):Design of intelligent neonatal blood perfusion assessment system
指導教授:林伯昰
指導教授(外文):Lin, Bor-Shyh
口試委員:林伯星陳秀玲詹明哲林伯昰
口試委員(外文):Lin, Bor-ShingChen, Hsiu-LinChan, Ming-CheLin, Bor-Shyh
口試日期:2021-12-22
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:36
中文關鍵詞:新生兒加護病房休克血液灌注近紅外光譜類神經網路
外文關鍵詞:neonatal intensive care unitshockblood perfusionnear-infrared spectroscopyneural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新生兒加護病房的高危險嬰兒經常遇到血流動力學不穩定的問題,血液循環不順暢可能導致休克或其他後遺症。但休克的症狀在初期不易被察覺,臨床上大多依賴有經驗的醫師判斷。因此,如何有效地評估新生兒的血液循環狀態對於即時治療具有重要意義。雖然有一些儀器可以估計血流量的訊息,如雷射都卜勒灌注成像 (laser Doppler perfusion imaging, LDPI)、雷射都卜勒血流儀 (laser Doppler flow meter, LDF)、側流暗場 (sidestream dark field, SDF) 成像、正交偏振光譜(orthogonal polarization spectroscopy, OPS) 成像和對比劑磁振血管攝影 (contrast-enhanced magnetic resonance angiography, CE-MRA),但是目前缺乏直接評估新生兒血液循環的監測系統。本研究提出一種基於近紅外光譜技術的智慧型新生兒血液灌注評估系統,可以同時監測血紅蛋白濃度和組織氧飽和度變化並進一步評估新生兒的血液灌注。通過施加壓力和放鬆壓力下血紅蛋白參數的變化定義幾個指標,以獲得新生兒灌注訊息。此外,基於神經網路的分類器可以有效地對不同血液灌注狀態的組別進行分類。從實驗結果來看,不同血液灌注狀態組別之間的差異可以準確地反映在一些定義的指標上,並且可以利用神經網路技術進行有效識別。
High-risk infants in the neonatal intensive care unit often encounter the problems with hemodynamic instability, and the poor blood circulation may cause shock or other sequelae. But the appearance of shock is not easy to be noticed in the initial stage, and most of the clinical judgments are subjectively dependent on the experienced physicians. Therefore, how to effectively evaluate the neonatal blood circulation state is important for the treatment in time. Although some instruments, such as laser Doppler perfusion imaging (LDPI), laser Doppler flow meter (LDF), sidestream dark field (SDF) imaging, orthogonal polarization spectroscopy (OPS) imaging, and contrast-enhanced magnetic resonance angiography (CE-MRA), can estimate the information of blood flow, there is still lack of monitoring systems to evaluate the neonatal blood circulation directly. Based on the technique of near-infrared spectroscopy, an intelligent neonatal blood perfusion assessment system was proposed in this study, to monitor the changes of hemoglobin concentration and tissue oxygen saturation simultaneously and further estimate the neonatal blood perfusion. Here, several indexes were defined from the changes of hemoglobin parameters under applying and relaxing pressure to obtain the neonatal perfusion information. Moreover, the neural network-based classifier was also used to effectively classify the groups with different blood perfusion states. From the experimental results, the difference between the groups with different blood perfusion states could exactly be reflected on several defined indexes and could be effectively recognized by using the technique of neural network.
摘 要----i
Abstract---ii
誌 謝---iv
Contents----v
List of Figures-vi
List of Tables--vii
Chapter 1 Introduction---1
1.1 Background--1
1.2 Previous research--2
1.3 Motivation--3
1.4 Organization structure of thesis--4
Chapter 2 Methods---5
2.1 Basic principle of near-infrared spectroscopy---5
2.2 Design of smart blood perfusion monitoring system---7
2.3 Experimental design---12
2.4 Neonatal blood perfusion classification---16
Chapter 3 Results---18
3.1 Neonatal blood perfusion indexes corresponding to different groups-----18
3.2 Performance evaluation of blood perfusion assessment system----22
Chapter 4 Discussions---26
Chapter 5 Conclusions---30
References------31
[1] D. Dilli, H. Soylu, and N. Tekin, “Neonatal hemodynamics and management of hypotension in newborns,” Turkish Archives of Pediatrics, vol. 53, no. Suppl 1, pp. S65-S75, 2018.
[2] I. M. Wright, J. L. Latter, R. M. Dyson, C. R. Levi, and V. L. Clifton, “Videomicroscopy as a tool for investigation of the microcirculation in the newborn,” Physiological Reports, vol. 4, no. 19, 2016, Art. no. e12941.
[3] N. V. Raju, M. J. Maisels, E. Kring, and L. Schwarz-Warner, “Capillary refill time in the hands and feet of normal newborn infants,” Clinical pediatrics, vol. 38, no. 3, pp. 139-144, 1999.
[4] S. L. Vrancken, A. F. van Heijst, and W. P. de Boode, “Neonatal Hemodynamics: From Developmental Physiology to Comprehensive Monitoring,” Front Pediatr, vol. 6, 2018, Art. no. 87.
[5] J. O'Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” Journal of Biomedical Optics, vol. 14, no. 3, 2009, Art. no. 034025.
[6] H. E. Suichies, C. Brouwer, and J. G. Aarnoudse, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early human development, vol. 23, no. 1, pp. 1-8, 1990.
[7] M. Roustit and J. L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends in Pharmacological Sciences, vol. 34, no. 7, pp. 373-384, 2013.
[8] V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers in Medical Science, vol. 24, no. 2, pp. 269-283, 2009.
[9] H. C. Choo, K. Nosaka, J. J. Peiffer, M. Ihsan, C. C. Yeo, and C. R. Abbiss, “Reliability of laser Doppler, near-infrared spectroscopy and Doppler ultrasound for peripheral blood flow measurements during and after exercise in the heat,” Journal of Sports Sciences, vol. 35, no. 17, pp. 1715-1723, 2017.
[10] P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince, “Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation,” Optics Express, vol. 15, no. 23, pp. 15101-15114, 2007.
[11] D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 1, pp. 98-104, 2002.
[12] W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nature Medicine, vol. 5, no. 10, pp. 1209-1212, 1999.
[13] M. P. Hartung, T. M. Grist, and C. J. Francois, “Magnetic resonance angiography: current status and future directions,” Journal of Cardiovascular Magnetic Resonance, vol. 13, pp. 1-11, 2011.
[14] A. Pellicer and C. Bravo Mdel, “Near-infrared spectroscopy: a methodology-focused review,” Seminars in Fetal and Neonatal Medicine, vol. 16, no. 1, pp. 42-49, 2011.
[15] J. -R. Kuo, M. -H. Chang, C. -C. Wang, C. -C. Chio, J. -J. Wang, and B. -S. Lin, “Wireless Near-infrared Spectroscopy System for Determining Brain Hemoglobin Levels in Laboratory Animals,” Journal of Neuroscience Methods, vol. 214, issue 2, pp. 204-209, 2013.
[16] J. -R. Kuo, B. -S. Lin, C. -L. Cheng, and C. -C. Chio, “Hypoxic-state Estimation of Brain Cells by Using Wireless Near-infrared Spectroscopy,” IEEE Journal of Biomedical and Health Informatics, vol. 18, issue 1, pp. 167-173, 2014.
[17] W. Chou, P. -J. Wu, C. -C. Fang, Y. -S. Yen, and B. -S. Lin, “Design of smart brain oxygenation monitoring system for estimating cardiovascular disease severity,” IEEE Access, vol. 8, pp. 98422-98429, 2020.
[18] Y. -K. Huang, C. -C. Chang, P. -X. Lin, and B. -S. Lin, “Quantitative Evaluation of Rehabilitation Effect on Peripheral Circulation of Diabetic Foot,” IEEE Journal of Biomedical and Health Informatics, vol. 22, issue 4, pp. 1019-1025, 2017.
[19] H. -C. Kuo, C. -C. Lo, P. -X. Lin, C. -C. Kao, Y. -H. Huang, and B. -S. Lin, “Wireless Optical Monitoring System Identifies Limb Induration Characteristics in Patients with Kawasaki Disease,” Journal of Allergy and Clinical Immunology, vol. 142, issue 2, pp. 710-711, 2018.
[20] K. -D. Lin, B. -S. Lin, G. -A. Lin, and B. -S. Lin, “Design of Smart Peripheral Blood Perfusion Monitoring System for Diabetics,” IEEE Sensors journal, vol. 21, issue 8, pp. 10167-10173, 2021.
[21] J. Menke, U. Voss, G. Moller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biology of the Neonate, vol. 83, no. 1, pp. 6-11, 2003.
[22] L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatric Research, vol. 74, no. 5, pp. 557-563, 2013.
[23] L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Physics in Medicine & Biology, vol. 51, no. 5, pp. N91-N98, 2006.
[24] M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” Journal of Biomedical Optics, vol. 14, no. 3, 2009 Art. no. 034001.
[25] P. Giacometti and S. G. Diamond, “Diffuse Optical Tomography for Brain Imaging: Continuous Wave Instrumentation and Linear Analysis Methods,” Optical Methods and Instrumentation in Brain Imaging and Therapy, vol. 3, pp. 57-85, 2013.
[26] V. Patil, J. Safaie, H. A. Moghaddam, F. Wallois, and R. Grebe, “Experimental investigation of NIRS spatial sensitivity,” Biomedical Optics Express, vol. 2, no. 6, pp. 1478-1493, 2011.
[27] I. Seri and J. Evans, “Controversies in the diagnosis and management of hypotension in the newborn infant,” Current opinion in pediatrics, vol. 13, no. 2, pp. 116-123, 2001.
[28] A. B. Zubrow, S. Hulman, H. Kushner, and B. Falkner, “Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study Philadelphia Neonatal Blood Pressure Study Group,” Journal of Perinatology, vol. 15, no. 6, pp. 470-479, 1995.
[29] G. Sainas, R. Milia, G. Palazzolo, G. Ibba, E. Marongiu, S. Roberto, and A. Crisafulli, “Mean blood pressure assessment during post-exercise: result from two different methods of calculation,” Journal of sports science and medicine, vol. 15, no. 3, pp. 424-433, 2016.
[30] J. Tian, M. Li, F. Chen, and N. Feng, “Learning Subspace-Based RBFNN Using Coevolutionary Algorithm for Complex Classification Tasks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 1, pp. 47-61, 2016.
[31] P. Kanirajan and V. Suresh Kumar, “Power quality disturbance detection and classification using wavelet and RBFNN,” Applied Soft Computing, vol. 35, pp. 470-481, 2015.
[32] M. R. Cowper, B. Mulgrew, and C. P. Unsworth, “Nonlinear prediction of chaotic signals using a normalised radial basis function network,” Signal Processing, vol. 82, no. 5, pp. 775-789, 2002.
[33] Y. Zou and Z. Zheng, “A Robust Adaptive RBFNN Augmenting Backstepping Control Approach for a Model-Scaled Helicopter,” IEEE Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2344-2352, 2015.
[34] B. -S. Lin, B. -S. Lin, F. -C. Chong, and F. Lai, “Higher-order-statistics-based radial basis function networks for signal enhancement,” IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 823-832, 2007.
[35] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed numeric and categorical data,” Data & Knowledge Engineering, vol. 63, no. 2, pp. 503-527, 2007.
[36] S. Zhang, W. Xing Zheng, and J. Zhang, “A new combined-step-size normalized least mean square algorithm for cyclostationary inputs,” Signal Processing, vol. 141, pp. 261-272, 2017.
[37] A. P. Schwepcke, A. K. Grzybowski, O. G. Boroviczény, and C. Nussbaum, “Effects of prematurity on the cutaneous microcirculatory network in the first weeks of life,” Frontiers in pediatrics, vol. 7, 2019, Art. no. 198.
[38] R. E. Giesinger and P. J. McNamara, “Hemodynamic instability in the critically ill neonate: An approach to cardiovascular support based on disease pathophysiology,” Seminars in Perinatology, vol. 40, no. 3, pp. 174-188, 2016.
[39] S. Gupta and S. M. Donn, “Assessment of neonatal perfusion,” Seminars in Fetal and Neonatal Medicine, vol. 25, no. 5, 2020, Art. no. 101144.
[40] S. Eriksson, J. Nilsson, and C. Sturesson. “Non-invasive imaging of microcirculation: a technology review.” Medical devices (Auckland, NZ), vol. 7, pp. 445-452, 2014.
[41] E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns, vol. 27, no. 6, pp. 561-568, 2001.
[42] I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvascular research, vol. 78, no. 1, pp. 4-13, 2009.
[43] M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser Doppler flowmetry,” Journal of Biomedical Optics, vol. 7, no. 2, pp. 236-243, 2002.
[44] D. W. Paul, P. Ghassemi, J. C. Ramella‐Roman, N. J. Prindeze, L. T. Moffatt, A. Alkhalil, and J. W. Shupp, “Noninvasive imaging technologies for cutaneous wound assessment: A review,” Wound Repair and Regeneration, vol. 23, no. 2, pp. 149-162, 2015.
[45] R. C. Arnold, J. E. Parrillo, R. P. Dellinger, M. E. Chansky, N. I. Shapiro, D. J. Lundy, and S. M. Hollenberg, “Point-of-care assessment of microvascular blood flow in critically ill patients,” Intensive care medicine, vol. 35, no, 10, pp. 1761-1766, 2009.
[46] M. Weindling and F. Paize, “Peripheral haemodynamics in newborns: best practice guidelines,” Early human development, vol. 86, no. 3, pp. 159-165, 2010.
[47] M. Roustit and J. L. Cracowski, “Non‐invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation, vol. 19, no. 1, pp. 47-64, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top