跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李欣烜
研究生(外文):Li, Hsin-Hsien
論文名稱:瀰漫性肺泡損傷與肺纖維化之關係探討及 併發COVID-19之可能機轉
論文名稱(外文):The possible link of diffuse alveolar damage and the potential mechanism of COVID-19 infection in pulmonary fibrosis
指導教授:許瀚水洪士杰
指導教授(外文):Hsu, Han-ShuiHung, Shih-Chieh
口試委員:陳理維陽光耀黃崇旂
口試委員(外文):Chen, Lee-WeiYang, Kuang-YaoHuang, Chung-Chi
口試日期:2022-1-13
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:急重症醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:87
中文關鍵詞:肺纖維化瀰漫性肺泡損傷急性呼吸窘迫症候群空氣汙染COVID-19ACE2TMPRSS2
外文關鍵詞:idiopathic pulmonary fibrosisdiffuse alveolar damageacute respiratory distress syndromeair pollutionSARS-CoV-2ACE2TMPRSS2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
每年有10%-20%原發性肺纖維化患者發生急性惡化,多數患者需住院接受治療且預後差,可能在急性惡化後3-4個月死亡。南義大利倫巴底地區為一工業大城,長期暴露在空氣汙染中,此地區原發性肺纖維化盛行率及惡化發生率高,在本次COVID-19大流行亦為確診率高且死亡率高的地區。儘管SARS-CoV-2病毒傳染途徑首要經由飛沫、氣溶膠及接觸傳播,但公衛證據仍見空氣污染濃度與確診率具高度相關性,空氣汙染與肺纖維化在COVID-19的角色尚不明確。我們在人體肺組織和動物模式發現,肺纖維化表現高的組織,其ACE2(angiotensin-converting enzyme 2)與TMPRSS2(transmembrane serine protease 2)表現量也升高;懸浮微粒與博來黴素誘發肺纖維化的動物模式得知,可透過阻斷IL-8(interlukin 8)/ CXCR1/2途徑降低ACE2與TMPRSS2表現,在此次COVID-19疫情中,可能可以解釋因肺纖維化母細胞的ACE2與TMPRSS2表現量升高,使其更具病毒SARS-CoV-2易感染性,且較有機會發展成為重症患者。再者,原發性肺纖維化急性惡化隨病程發展成急性呼吸窘迫症候群,使用呼吸器除了是一項支持,亦會造成傷害,卻鮮少文獻探究。我們利用急性呼吸窘迫症候群病患的病理切片,探討呼吸器參數設定與臨床參數之相關性。在回溯臨床與病理切片結果發現,瀰漫性肺泡損傷合併肺纖維化或原發性肺纖維化急性惡化,其呼吸器參數(動態機械力、動態驅動壓力、最大吸氣壓力)設定皆高且預後差,顯示不管病程中何時發展肺纖維化,一旦呼吸衰竭使用機械通氣輔助,都會面臨呼吸器引發肺損傷。因此,原發性肺纖維化患者應避免急性惡化,若呼吸衰竭使用呼吸器,應小心其呼吸器參數設定,但目前針對原發性肺纖維化患者的呼吸器參數設定建議仍未有定論,
有待未來大型研究探討。
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has been defined as an acute, clinical respiratory deterioration superimposed on fibrotic lung. Air pollution characterized high prevalence of AE-IPF, and lead a poor prognosis after SARS-CoV-2 infection, but the underlying mechanisms are not well explored. Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are the keys to the entry of SARS-CoV-2. We measured ACE2 and TMPRSS2 expression levels in lung tissues of control non-IPF and IPF patients, and used murine animal models to establish pulmonary fibrosis by bleomycin and particulate matter (PM). The severity of pulmonary fibrosis and the expression of ACE2 and TMPRSS2 were caused by PM exposure and blocked by deletion of KC (keratinocyte chemoattractant) or treatment with Reparixin. It can be mediated through upregulating ACE2 and TMPRSS2 in pulmonary fibroblasts, and prevented by blocking the IL-8/CXCR1/2 pathway. However, AE-IPF commonly lead to acute hypoxemia respiratory failure requiring mechanical ventilation, which can lead to pulmonary fibrosis. We performed a retrospective analysis of acute respiratory distress syndrome (ARDS) patients who received open lung biopsy to examine the impact of histological fibrosis on clinical outcomes and mortality. A total of 68 ARDS patients who had diffuse alveolar damage (DAD) were analyzed and stratified into fibrosis or not. Airway pressures at the time of ARDS diagnosis and on the day of biopsy were not significantly different between DAD with fibrosis group and AE-IPF. The overall 90-d hospital mortality and duration of ventilator usage also had no significance. However, these two groups had high injurious ventilator settings and it may contribute to the progression of fibrosis. The protective strategy of ventilator settings is still controversial for fibrosis lung even acute or chronic phase. Pending further studies to define the optimal strategy to ventilate these fibrotic lungs, regardless of the underlying etiology.
目錄

中文摘要 i
英文摘要 iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
第一節、 研究背景 2
一、 肺纖維化(pulmonary fibrosis) 2
二、 急性呼吸窘迫症候群 5
三、 新型冠狀肺炎 7
四、 空氣汙染 10
第二節、 研究假說與目的 12
第二章 實驗材料與方法 15
第一節、 人體肺組織取得 16
一、 間質性肺炎病理切片 16
二、 開放活體組織切片 16
第二節、 病患資料來源 16
一、 病歷回溯 16
二、 參數定義 17
三、 預後定義 17
第三節、 動物實驗 18
一、 懸浮微粒 18
二、 動物模式 19
三、 基因剔除鼠 19
第四節、 病理組織染色 20
一、 蘇木素-伊紅染色 20
二、 免疫組織染色法與定量 20
三、 免疫螢光染色法 21
四、 Picro Sirius Red, Masson’s trichrome, elastin stain染色法與定量 22
第五節、 統計方法 23
一、 統計方式 23
二、 存活分析 23
第三章 結果 24
第一節、 間質性肺炎患者肺組織染色表現 25
一、 ACE2、TMPRSS2在正常人體組織表現 25
二、 人體組織肺纖維化程度表現 25
三、 肺纖維化程度與ACE2、TMPRSS2在人體組織表現 25
第二節、 動物模式肺組織染色表現 26
一、 懸浮微粒與博來黴素誘發肺纖維化動物模式 26
二、 Keratinocyte chemoattractant(KC)基因剔除鼠與Reparixin治療組別 27
第三節、 瀰漫性肺泡損傷合併肺纖維化與原發性肺纖維化急性惡化病歷回溯 28
一、 病理切片結果 28
二、 臨床與呼吸器參數比較 29
三、 預後比較 29
第四章 討論 31
一、 ACE2與TMPRSS2在人體肺組織的表現量 32
二、 懸浮微粒與肺纖維化提高肺組織ACE2與TMPRSS2表現量 33
三、 IL-8途徑阻斷肺組織ACE2與TMPRSS2表現量且降低肺纖維化嚴重度 34
四、 原發性肺纖維化急性惡化與急性呼吸窘迫症候群之異同 35
五、 肺纖維化之呼吸器設定策略 37
第五章 結論 39
參考文獻 41
圖與表 51
附錄 74
1. Green, F.H., Overview of pulmonary fibrosis. Chest, 2002. 122(6 Suppl): p. 334s-339s.
2. Hutchinson, J., et al., Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J, 2015. 46(3): p. 795-806.
3. King, T.E., Jr., A. Pardo, and M. Selman, Idiopathic pulmonary fibrosis. Lancet, 2011. 378(9807): p. 1949-61.
4. Raghu, G., et al., Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med, 2018. 198(5): p. e44-e68.
5. Collard, H.R., et al., Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report. Am J Respir Crit Care Med, 2016. 194(3): p. 265-75.
6. Kim, D.S., et al., Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. Eur Respir J, 2006. 27(1): p. 143-50.
7. Song, J.W., et al., Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J, 2011. 37(2): p. 356-63.
8. Travis, W.D., et al., An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med, 2013. 188(6): p. 733-48.
9. Marchioni, A., et al., Acute exacerbation of idiopathic pulmonary fibrosis: lessons learned from acute respiratory distress syndrome? Crit Care, 2018. 22(1): p. 80.
10. Ferguson, N.D., et al., Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med, 2005. 33(10): p. 2228-34.
11. Ashbaugh, D.G., et al., Acute respiratory distress in adults. Lancet, 1967. 2(7511): p. 319-23.
12. Ranieri, V.M., et al., Acute respiratory distress syndrome: the Berlin Definition. Jama, 2012. 307(23): p. 2526-33.
13. Bellani, G., et al., Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. Jama, 2016. 315(8): p. 788-800.
14. Katzenstein, A.L., C.M. Bloor, and A.A. Leibow, Diffuse alveolar damage--the role of oxygen, shock, and related factors. A review. Am J Pathol, 1976. 85(1): p. 209-28.
15. Cardinal-Fernández, P., et al., The Presence of Diffuse Alveolar Damage on Open Lung Biopsy Is Associated With Mortality in Patients With Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Chest, 2016. 149(5): p. 1155-64.
16. Guerin, C., et al., Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Med, 2015. 41(2): p. 222-30.
17. Kao, K.C., et al., Diffuse alveolar damage associated mortality in selected acute respiratory distress syndrome patients with open lung biopsy. Crit Care, 2015. 19(1): p. 228.
18. Lorente, J.A., et al., Acute respiratory distress syndrome in patients with and without diffuse alveolar damage: an autopsy study. Intensive Care Med, 2015. 41(11): p. 1921-30.
19. Thompson, B.T., R.C. Chambers, and K.D. Liu, Acute Respiratory Distress Syndrome. N Engl J Med, 2017. 377(6): p. 562-572.
20. Tomashefski, J.F., Jr., Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med, 2000. 21(3): p. 435-66.
21. Bachofen, M. and E.R. Weibel, Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med, 1982. 3(1): p. 35-56.
22. Bachofen, M. and E.R. Weibel, Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis, 1977. 116(4): p. 589-615.
23. Lauer, S.A., et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med, 2020. 172(9): p. 577-582.
24. Guan, W.J., et al., Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 2020. 382(18): p. 1708-1720.
25. Richardson, S., et al., Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama, 2020. 323(20): p. 2052-2059.
26. Docherty, A.B., et al., Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. Bmj, 2020. 369: p. m1985.
27. García, L.F., Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol, 2020. 11: p. 1441.
28. Myers, L.C., et al., Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. Jama, 2020. 323(21): p. 2195-2198.
29. Wang, W., et al., Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama, 2020. 323(18): p. 1843-1844.
30. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280.e8.
31. Hamming, I., et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol, 2004. 203(2): p. 631-7.
32. Masre, S.F., et al., Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol, 2021. 31(5): p. 1-9.
33. Smith, J.C., et al., Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell, 2020. 53(5): p. 514-529.e3.
34. Saheb Sharif-Askari, N., et al., Airways Expression of SARS-CoV-2 Receptor, ACE2, and TMPRSS2 Is Lower in Children Than Adults and Increases with Smoking and COPD. Mol Ther Methods Clin Dev, 2020. 18: p. 1-6.
35. Schulze, F., et al., Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes (Basel), 2017. 8(10).
36. Xing, Y.F., et al., The impact of PM2.5 on the human respiratory system. J Thorac Dis, 2016. 8(1): p. E69-74.
37. Chen, R., et al., Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities. Am J Respir Crit Care Med, 2017. 196(1): p. 73-81.
38. Ge, E., et al., Differential effects of size-specific particulate matter on emergency department visits for respiratory and cardiovascular diseases in Guangzhou, China. Environ Pollut, 2018. 243(Pt A): p. 336-345.
39. Johannson, K.A., et al., Acute exacerbation of idiopathic pulmonary fibrosis associated with air pollution exposure. Eur Respir J, 2014. 43(4): p. 1124-31.
40. Faustini, A., et al., Air pollution and multiple acute respiratory outcomes. Eur Respir J, 2013. 42(2): p. 304-13.
41. Duan, Z., et al., [Effects of PM2.5 exposure on Klebsiella pneumoniae clearance in the lungs of rats]. Zhonghua Jie He He Hu Xi Za Zhi, 2013. 36(11): p. 836-40.
42. Xiao, C., et al., The effect of air pollutants on the microecology of the respiratory tract of rats. Environ Toxicol Pharmacol, 2013. 36(2): p. 588-594.
43. Yang, L., C. Li, and X. Tang, The Impact of PM(2.5) on the Host Defense of Respiratory System. Front Cell Dev Biol, 2020. 8: p. 91.
44. Conti, S., et al., The association between air pollution and the incidence of idiopathic pulmonary fibrosis in Northern Italy. Eur Respir J, 2018. 51(1).
45. Conticini, E., B. Frediani, and D. Caro, Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut, 2020. 261: p. 114465.
46. George, P.M., A.U. Wells, and R.G. Jenkins, Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med, 2020.
47. Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020. 395(10229): p. 1054-1062.
48. Drake, T.M., et al., Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease: An International Multicenter Study. Am J Respir Crit Care Med, 2020.
49. Xu, Z., et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020. 8(4): p. 420-422.
50. Zhang, H., et al., Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Ann Intern Med, 2020. 172(9): p. 629-632.
51. King, T.E., Jr., et al., BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2011. 184(1): p. 92-9.
52. Slutsky, A.S. and V.M. Ranieri, Ventilator-induced lung injury. N Engl J Med, 2013. 369(22): p. 2126-36.
53. Gaithersburg. Standard Reference Material® 1649b, Urban dust. National Institute of Standards and Technology. 30 August 2016.
54. Cheng, I.Y., et al., Particulate Matter Increases the Severity of Bleomycin-Induced Pulmonary Fibrosis through KC-Mediated Neutrophil Chemotaxis. Int J Mol Sci, 2019. 21(1).
55. Zhou, X., & Moore, B. B. (2017). Lung Section Staining and Microscopy. Bio-protocol, 7(10), e2286. https://doi.org/10.21769/BioProtoc.2286
56. Francisco JS, Moraes HP, Dias EP. Evaluation of the Image-Pro Plus 4.5 software for automatic counting of labeled nuclei by PCNA immunohistochemistry. Braz Oral Res. 2004;18 2:100–4.
57. Flint, M.H., et al., The Masson staining of collagen — an explanation of an apparent paradox. The Histochemical Journal, 1975. 7(6): p. 529-546.
58. VERHOEFF, F.H., SOME NEW STAINING METHODS OF WIDE APPLICABILITY.: INCLUDING A RAPID DIFFERENTIAL STAIN FOR ELASTIC TISSUE. Journal of the American Medical Association, 1908. L(11): p. 876-877.
59. Lazzarini AL, Levine RA, Ploutz-Snyder RJ, Sanderson SO. Advances in digital quantification technique enhance discrimination between mild and advanced liver fibrosis in chronic hepatitis C. Liver Int. 2005;25(6):1142–9.
60. Huang, J., et al., SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. Cell Stem Cell, 2020. 27(6): p. 962-973.e7.
61. Kim, K.K., et al., Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A, 2006. 103(35): p. 13180-5.
62. Willis, B.C., et al., Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol, 2005. 166(5): p. 1321-32.
63. Richards TJ, Kaminski N, Baribaud F, Flavin S, Brodmerkel C, Horowitz D,et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;185(1):67–76 https://www.ncbi.nlm.nih.gov/pubmed/22016448.
64. Moriconi A, Cesta MC, Cervellera MN, Aramini A, Coniglio S, Colagioia S,et al. Design of noncompetitive interleukin-8 inhibitors acting on CXCR1 and CXCR2. J Med Chem. 2007;50(17):3984–4002 https://www.ncbi.nlm.nih.gov/pubmed/17665889.
65. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT,et al. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. J Infect Dis. 2020;222(4):556–63.
66. Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM, et al.Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020;53 5:514–29.e3.
67. Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M, Temsah MH, Al Heialy S, Hamid Q, et al. Airways expression of SARS-CoV-2 receptor, ACE2,and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol Ther Methods Clin Dev. 2020;18:1–6.
68. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res. 2020;21(1):182.
69. Ciencewicki, J. and I. Jaspers, Air pollution and respiratory viral infection. Inhal Toxicol, 2007. 19(14): p. 1135-46.
70. Lin, C.I., et al., Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int J Biol Sci, 2018. 14(3): p. 253-265.
71. Imai, Y., et al., Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005. 436(7047): p. 112-6.
72. Chen, Y.C., et al., Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-κB-dependent pathway in lung epithelial cells. Part Fibre Toxicol, 2020. 17(1): p. 41.
73. Tanjore, H., et al., Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med, 2009. 180(7): p. 657-65.
74. Sesé, L., et al., Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis. Thorax, 2018. 73(2): p. 145-150.
75. Yang L, Herrera J, Gilbertsen A, Xia H, Smith K, Benyumov A, et al. IL-8 mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L127–l36.
76. Horby, P., et al., Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med, 2021. 384(8): p. 693-704.
77. Chang, M.M., et al., Mechanism of dexamethasone-mediated interleukin-8 gene suppression in cultured airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2001. 280(1): p. L107-15.
78. Standiford, T.J., et al., Regulation of human alveolar macrophage- and blood monocyte-derived interleukin-8 by prostaglandin E2 and dexamethasone. Am J Respir Cell Mol Biol, 1992. 6(1): p. 75-81.
79. Donnelly, S.C., et al., Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet, 1993. 341(8846): p. 643-7.
80. Zapol, W.M., et al., Pulmonary fibrosis in severe acute respiratory failure. Am Rev Respir Dis, 1979. 119(4): p. 547-54.
81. Slutsky, A.S., Ranieri, V.M. Ventilator-induced lung injury. N Engl J Med 2013; 369: 2126-2136.
82. Marchioni, A., et al., Ventilatory support and mechanical properties of the fibrotic lung acting as a "squishy ball". Ann Intensive Care, 2020. 10(1): p. 13.
83. Brower, R.G., et al., Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med, 2000. 342(18): p. 1301-8.
84. Pelosi, P. and L. Ball, Should we titrate ventilation based on driving pressure? Maybe not in the way we would expect. Ann Transl Med, 2018. 6(19): p. 389.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊