|
1. Green, F.H., Overview of pulmonary fibrosis. Chest, 2002. 122(6 Suppl): p. 334s-339s. 2. Hutchinson, J., et al., Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J, 2015. 46(3): p. 795-806. 3. King, T.E., Jr., A. Pardo, and M. Selman, Idiopathic pulmonary fibrosis. Lancet, 2011. 378(9807): p. 1949-61. 4. Raghu, G., et al., Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med, 2018. 198(5): p. e44-e68. 5. Collard, H.R., et al., Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report. Am J Respir Crit Care Med, 2016. 194(3): p. 265-75. 6. Kim, D.S., et al., Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. Eur Respir J, 2006. 27(1): p. 143-50. 7. Song, J.W., et al., Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J, 2011. 37(2): p. 356-63. 8. Travis, W.D., et al., An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med, 2013. 188(6): p. 733-48. 9. Marchioni, A., et al., Acute exacerbation of idiopathic pulmonary fibrosis: lessons learned from acute respiratory distress syndrome? Crit Care, 2018. 22(1): p. 80. 10. Ferguson, N.D., et al., Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med, 2005. 33(10): p. 2228-34. 11. Ashbaugh, D.G., et al., Acute respiratory distress in adults. Lancet, 1967. 2(7511): p. 319-23. 12. Ranieri, V.M., et al., Acute respiratory distress syndrome: the Berlin Definition. Jama, 2012. 307(23): p. 2526-33. 13. Bellani, G., et al., Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. Jama, 2016. 315(8): p. 788-800. 14. Katzenstein, A.L., C.M. Bloor, and A.A. Leibow, Diffuse alveolar damage--the role of oxygen, shock, and related factors. A review. Am J Pathol, 1976. 85(1): p. 209-28. 15. Cardinal-Fernández, P., et al., The Presence of Diffuse Alveolar Damage on Open Lung Biopsy Is Associated With Mortality in Patients With Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Chest, 2016. 149(5): p. 1155-64. 16. Guerin, C., et al., Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Med, 2015. 41(2): p. 222-30. 17. Kao, K.C., et al., Diffuse alveolar damage associated mortality in selected acute respiratory distress syndrome patients with open lung biopsy. Crit Care, 2015. 19(1): p. 228. 18. Lorente, J.A., et al., Acute respiratory distress syndrome in patients with and without diffuse alveolar damage: an autopsy study. Intensive Care Med, 2015. 41(11): p. 1921-30. 19. Thompson, B.T., R.C. Chambers, and K.D. Liu, Acute Respiratory Distress Syndrome. N Engl J Med, 2017. 377(6): p. 562-572. 20. Tomashefski, J.F., Jr., Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med, 2000. 21(3): p. 435-66. 21. Bachofen, M. and E.R. Weibel, Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med, 1982. 3(1): p. 35-56. 22. Bachofen, M. and E.R. Weibel, Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis, 1977. 116(4): p. 589-615. 23. Lauer, S.A., et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med, 2020. 172(9): p. 577-582. 24. Guan, W.J., et al., Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 2020. 382(18): p. 1708-1720. 25. Richardson, S., et al., Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama, 2020. 323(20): p. 2052-2059. 26. Docherty, A.B., et al., Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. Bmj, 2020. 369: p. m1985. 27. García, L.F., Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol, 2020. 11: p. 1441. 28. Myers, L.C., et al., Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. Jama, 2020. 323(21): p. 2195-2198. 29. Wang, W., et al., Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama, 2020. 323(18): p. 1843-1844. 30. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280.e8. 31. Hamming, I., et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol, 2004. 203(2): p. 631-7. 32. Masre, S.F., et al., Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol, 2021. 31(5): p. 1-9. 33. Smith, J.C., et al., Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell, 2020. 53(5): p. 514-529.e3. 34. Saheb Sharif-Askari, N., et al., Airways Expression of SARS-CoV-2 Receptor, ACE2, and TMPRSS2 Is Lower in Children Than Adults and Increases with Smoking and COPD. Mol Ther Methods Clin Dev, 2020. 18: p. 1-6. 35. Schulze, F., et al., Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes (Basel), 2017. 8(10). 36. Xing, Y.F., et al., The impact of PM2.5 on the human respiratory system. J Thorac Dis, 2016. 8(1): p. E69-74. 37. Chen, R., et al., Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities. Am J Respir Crit Care Med, 2017. 196(1): p. 73-81. 38. Ge, E., et al., Differential effects of size-specific particulate matter on emergency department visits for respiratory and cardiovascular diseases in Guangzhou, China. Environ Pollut, 2018. 243(Pt A): p. 336-345. 39. Johannson, K.A., et al., Acute exacerbation of idiopathic pulmonary fibrosis associated with air pollution exposure. Eur Respir J, 2014. 43(4): p. 1124-31. 40. Faustini, A., et al., Air pollution and multiple acute respiratory outcomes. Eur Respir J, 2013. 42(2): p. 304-13. 41. Duan, Z., et al., [Effects of PM2.5 exposure on Klebsiella pneumoniae clearance in the lungs of rats]. Zhonghua Jie He He Hu Xi Za Zhi, 2013. 36(11): p. 836-40. 42. Xiao, C., et al., The effect of air pollutants on the microecology of the respiratory tract of rats. Environ Toxicol Pharmacol, 2013. 36(2): p. 588-594. 43. Yang, L., C. Li, and X. Tang, The Impact of PM(2.5) on the Host Defense of Respiratory System. Front Cell Dev Biol, 2020. 8: p. 91. 44. Conti, S., et al., The association between air pollution and the incidence of idiopathic pulmonary fibrosis in Northern Italy. Eur Respir J, 2018. 51(1). 45. Conticini, E., B. Frediani, and D. Caro, Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut, 2020. 261: p. 114465. 46. George, P.M., A.U. Wells, and R.G. Jenkins, Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med, 2020. 47. Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020. 395(10229): p. 1054-1062. 48. Drake, T.M., et al., Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease: An International Multicenter Study. Am J Respir Crit Care Med, 2020. 49. Xu, Z., et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020. 8(4): p. 420-422. 50. Zhang, H., et al., Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Ann Intern Med, 2020. 172(9): p. 629-632. 51. King, T.E., Jr., et al., BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2011. 184(1): p. 92-9. 52. Slutsky, A.S. and V.M. Ranieri, Ventilator-induced lung injury. N Engl J Med, 2013. 369(22): p. 2126-36. 53. Gaithersburg. Standard Reference Material® 1649b, Urban dust. National Institute of Standards and Technology. 30 August 2016. 54. Cheng, I.Y., et al., Particulate Matter Increases the Severity of Bleomycin-Induced Pulmonary Fibrosis through KC-Mediated Neutrophil Chemotaxis. Int J Mol Sci, 2019. 21(1). 55. Zhou, X., & Moore, B. B. (2017). Lung Section Staining and Microscopy. Bio-protocol, 7(10), e2286. https://doi.org/10.21769/BioProtoc.2286 56. Francisco JS, Moraes HP, Dias EP. Evaluation of the Image-Pro Plus 4.5 software for automatic counting of labeled nuclei by PCNA immunohistochemistry. Braz Oral Res. 2004;18 2:100–4. 57. Flint, M.H., et al., The Masson staining of collagen — an explanation of an apparent paradox. The Histochemical Journal, 1975. 7(6): p. 529-546. 58. VERHOEFF, F.H., SOME NEW STAINING METHODS OF WIDE APPLICABILITY.: INCLUDING A RAPID DIFFERENTIAL STAIN FOR ELASTIC TISSUE. Journal of the American Medical Association, 1908. L(11): p. 876-877. 59. Lazzarini AL, Levine RA, Ploutz-Snyder RJ, Sanderson SO. Advances in digital quantification technique enhance discrimination between mild and advanced liver fibrosis in chronic hepatitis C. Liver Int. 2005;25(6):1142–9. 60. Huang, J., et al., SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. Cell Stem Cell, 2020. 27(6): p. 962-973.e7. 61. Kim, K.K., et al., Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A, 2006. 103(35): p. 13180-5. 62. Willis, B.C., et al., Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol, 2005. 166(5): p. 1321-32. 63. Richards TJ, Kaminski N, Baribaud F, Flavin S, Brodmerkel C, Horowitz D,et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;185(1):67–76 https://www.ncbi.nlm.nih.gov/pubmed/22016448. 64. Moriconi A, Cesta MC, Cervellera MN, Aramini A, Coniglio S, Colagioia S,et al. Design of noncompetitive interleukin-8 inhibitors acting on CXCR1 and CXCR2. J Med Chem. 2007;50(17):3984–4002 https://www.ncbi.nlm.nih.gov/pubmed/17665889. 65. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT,et al. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. J Infect Dis. 2020;222(4):556–63. 66. Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM, et al.Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020;53 5:514–29.e3. 67. Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M, Temsah MH, Al Heialy S, Hamid Q, et al. Airways expression of SARS-CoV-2 receptor, ACE2,and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol Ther Methods Clin Dev. 2020;18:1–6. 68. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res. 2020;21(1):182. 69. Ciencewicki, J. and I. Jaspers, Air pollution and respiratory viral infection. Inhal Toxicol, 2007. 19(14): p. 1135-46. 70. Lin, C.I., et al., Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int J Biol Sci, 2018. 14(3): p. 253-265. 71. Imai, Y., et al., Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005. 436(7047): p. 112-6. 72. Chen, Y.C., et al., Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-κB-dependent pathway in lung epithelial cells. Part Fibre Toxicol, 2020. 17(1): p. 41. 73. Tanjore, H., et al., Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med, 2009. 180(7): p. 657-65. 74. Sesé, L., et al., Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis. Thorax, 2018. 73(2): p. 145-150. 75. Yang L, Herrera J, Gilbertsen A, Xia H, Smith K, Benyumov A, et al. IL-8 mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L127–l36. 76. Horby, P., et al., Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med, 2021. 384(8): p. 693-704. 77. Chang, M.M., et al., Mechanism of dexamethasone-mediated interleukin-8 gene suppression in cultured airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2001. 280(1): p. L107-15. 78. Standiford, T.J., et al., Regulation of human alveolar macrophage- and blood monocyte-derived interleukin-8 by prostaglandin E2 and dexamethasone. Am J Respir Cell Mol Biol, 1992. 6(1): p. 75-81. 79. Donnelly, S.C., et al., Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet, 1993. 341(8846): p. 643-7. 80. Zapol, W.M., et al., Pulmonary fibrosis in severe acute respiratory failure. Am Rev Respir Dis, 1979. 119(4): p. 547-54. 81. Slutsky, A.S., Ranieri, V.M. Ventilator-induced lung injury. N Engl J Med 2013; 369: 2126-2136. 82. Marchioni, A., et al., Ventilatory support and mechanical properties of the fibrotic lung acting as a "squishy ball". Ann Intensive Care, 2020. 10(1): p. 13. 83. Brower, R.G., et al., Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med, 2000. 342(18): p. 1301-8. 84. Pelosi, P. and L. Ball, Should we titrate ventilation based on driving pressure? Maybe not in the way we would expect. Ann Transl Med, 2018. 6(19): p. 389.
|