( 您好!臺灣時間:2023/01/29 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hsiang, Wen-Ling
論文名稱(外文):The Study of Acetone Sensitivity Based on Surface Modified Poly-Si Nanowires FETs
指導教授(外文):Chung, Hui-Min
外文關鍵詞:Acetone gas sensingPoly-Si NanowiresSurface ModificationPhthalocyanineCyano-containing materialTCNQ
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討多晶矽奈米線電晶體對丙酮氣體的感測能力,以電流比值作為判斷感測能力的依據。實驗分別修飾酞菁材料以及含氰基材料於多晶矽奈米線的表面,透過材料上的官能基對丙酮氣體分子的化學吸引力來改善感測能力。除此之外,本實驗也將多晶矽奈米線元件置於不同相對濕度下對丙酮氣體進行感測,以確認丙酮氣體分子和水氣的競爭關係。最後,實驗結果證實,元件表面修飾含氰基之材料可有效提升感測能力,在相對溼度60%下,針對3.4 ppm的丙酮氣體其電性提升約32.7 %。因此,非常適合應用於生醫上糖尿病患者呼氣的丙酮氣體檢測。
Evaluation of acetone gas sensing ability based on poly-Si nanowires field-effect transistor was the main focus of this thesis. The sensing ability is defined by measured current ratio. It can be improved by the chemical attraction between acetone molecules and specific functional groups of the modified organic materials which prepared either by thermal evaporation or spin coating methods on top of the poly-Si nanowires field-effect transistors. In order to verify the competitive relationship between acetone molecules and water molecules, gas sensing abilities were measured under different relative humidity (RH) circumstances. Finally, the experimental results suggested that the current ratio of cyano-containing material increased 32.7 % with 3.4 ppm acetone gas at RH 60%. The result indicated that the compound containing cyano-functional group can be greatly improved the device’s acetone gas sensing ability.
摘 要 i
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第 1 章、 序論 1
1.1 研究背景 1
1.2 氣體感測 2
1.2.1 氣體感測的臨床醫學研究 2
1.2.2 丙酮氣體檢測糖尿病的條件 4
1.2.3 各類型氣體感測器 5
1.3 表面修飾 7
1.3.1 表面修飾之影響 7
1.3.2 修飾層材料 7
1.4 研究動機與目標 9
1.5 論文架構 9
第 2 章、 實驗製程與設備 10
2.1 多晶矽奈米線場效電晶體(Poly-Si Nanowires Field Effect Transistors) 10
2.2 多晶矽奈米線場效電晶體元件製作流程 11
2.3 多晶矽奈米線場效電晶體表面修飾 14
2.3.1 元件表面清洗 14
2.3.2 元件表面修飾 14
2.4 實驗儀器及原理 16
2.4.1 超音波震盪器(Ultrasonic cleaner) 16
2.4.2 氧氣電漿清洗機(Oxygen plasma cleaner) 16
2.4.3 旋轉塗佈機(Spin coater) 16
2.4.4 熱蒸鍍機(Thermal coater) 17
2.4.5 加熱器(Hot plate) 17
2.4.6 Keithley 2636 IV Analyzer 18
2.4.7 原子力顯微鏡(Atomic Force Microscope, AFM) 18
2.5 氣體感測系統 19
2.5.1 感測系統 19
2.5.2 丙酮氣體感測的量測流程 20
2.5.3 丙酮氣體的濃度控制 21
第 3 章、 實驗原理與機制 23
3.1 多晶矽奈米線場效電晶體的工作原理 23
3.2 場效電晶體的重要參數 24
3.2.1 臨界電壓(Threshold voltage, VTH) 24
3.2.2 次臨界擺幅(Subthershold Swing, S.S.) 26
3.2.3 電流開關比(On/Off ratio) 26
3.2.4 轉導值(Transconductance, gm) 27
3.2.5 載子遷移率(mobility, μ) 27
3.3 氣體感測能力量化 28
3.4 多晶矽奈米線場效電晶體對丙酮氣體的感測機制 28
第 4 章、 實驗結果與討論 29
4.1 引言 29
4.2 表面修飾參數 29
4.2.1 表面修飾層的厚度 29
4.2.2 修飾層對於奈米線元件的影響 31
4.3 丙酮氣體感測實驗參數 33
4.3.1 多晶矽奈米線元件之感測實驗參數 33
4.3.2 TCNQ修飾層元件之感測實驗參數 36
4.3.3 CuPc修飾層元件之感測實驗參數 39
4.3.4 FePc修飾層元件之感測實驗參數 42
4.4 多晶矽奈米線元件對丙酮氣體感測能力之比較與討論 45
4.4.1 一般元件對丙酮氣體的感測機制與討論 45
4.4.2 修飾元件對丙酮氣體的感測機制與討論 46
4.5 相對濕度對多晶矽奈米線場效電晶體的電性之影響 50
4.5.1 水氣對一般元件的影響 51
4.5.2 水氣對修飾元件的影響 51
第 5 章、 結論與未來展望 52
5.1 總結 52
5.2 未來發展 53
參考文獻 54
[1] V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C. P. Liu, and B. Mwakikunga, "Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring," Diagnostics (Basel), vol. 8, no. 1, 2018.
[2] M. Steinbacher, J. Dommen, C. Ammann, C. Spirig, A. Neftel, and A. S. H. Prevot, "Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements," International Journal of Mass Spectrometry, vol. 239, no. 2-3, pp. 117-128, 2004.
[3] M. Shirasu and K. Touhara, "The scent of disease: volatile organic compounds of the human body related to disease and disorder," J Biochem, vol. 150, no. 3, pp. 257-66, 2011.
[4] A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, "Applications of breath gas analysis in medicine," International Journal of Mass Spectrometry, vol. 239, no. 2-3, pp. 227-233, 2004.
[5] C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, "Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization," J Chromatogr B Analyt Technol Biomed Life Sci, vol. 810, no. 2, pp. 269-75, 2004.
[6] P. Spanel, K. Dryahina, A. Rejskova, T. W. Chippendale, and D. Smith, "Breath acetone concentration; biological variability and the influence of diet," Physiol Meas, vol. 32, no. 8, pp. N23-31, 2011.
[7] S. W. Ryter and A. M. Choi, "Carbon monoxide in exhaled breath testing and therapeutics," J Breath Res, vol. 7, no. 1, p. 017111, 2013.
[8] N. T. Brannelly, J. P. Hamilton-Shield, and A. J. Killard, "The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics," Crit Rev Anal Chem, vol. 46, no. 6, pp. 490-501, 2016.
[9] R. Adrover, D. Cocozzella, E. Ridruejo, A. Garcia, J. Rome, and J. J. Podesta, "Breath-ammonia testing of healthy subjects and patients with cirrhosis," Dig Dis Sci, vol. 57, no. 1, pp. 189-95, 2012.
[10] R. Dweik, P. Boggs, S. Erzurum, C. Irvin, M. Leigh, J. Lundberg, A. Olin, A. Plummer, and D. Taylor, "An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications," American journal of respiratory and critical care medicine, vol. 184(5), pp. 602-15, 2011.
[11] A. D. Worrall, J. A. Bernstein, and A. P. Angelopoulos, "Portable method of measuring gaseous acetone concentrations," Talanta, vol. 112, pp. 26-30, 2013.
[12] P. Amlendu et al., "Breath Acetone as Biomarker for Lipid Oxidation and Early Ketone Detection," Global Journal of Obesity, Diabetes and Metabolic Syndrome, vol. 1, no. 1, pp. 012-019, 2014.
[13] H. Nazemi, A. Joseph, J. Park, and A. Emadi, "Advanced Micro- and Nano-Gas Sensor Technology: A Review," Sensors (Basel), vol. 19, no. 6, 2019.
[14] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology," Sensors (Basel), vol. 12, no. 7, pp. 9635-65, 2012.
[15] B. K. Paul et al., "Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber," Alexandria Engineering Journal, vol. 59, no. 6, pp. 5045-5052, 2020.
[16] M. R. Eslami and N. Alizadeh, "Ultrasensitive and selective QCM sensor for detection of trace amounts of nitroexplosive vapors in ambient air based on polypyrrole—Bromophenol blue nanostructure," Sensors and Actuators B: Chemical, vol. 278, pp. 55-63, 2019.
[17] H. Bai and G. Shi, "Gas Sensors Based on Conducting Polymers," Sensors, vol. 7, no. 3, pp. 267-307, 2007.
[18] K. Manoli, L. M. Dumitru, M. Y. Mulla, M. Magliulo, C. Di Franco, M. V. Santacroce, G. Scamarcio, and L. Torsi, "A comparative study of the gas sensing behavior in P3HT- and PBTTT-based OTFTs: the influence of film morphology and contact electrode position," Sensors (Basel), vol. 14, no. 9, pp. 16869-80, 2014.
[19] L. Zhu, W. Zeng, and Y. Li, "A novel cactus-like WO3-SnO2 nanocomposite and its acetone gas sensing properties," Materials Letters, vol. 231, pp. 5-7, 2018.
[20] P. Wang, T. Dong, C. Jia, and P. Yang, "Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet," Sensors and Actuators B: Chemical, vol. 288, pp. 1-11, 2019.
[21] J. Kaur, K. Anand, A. Kaur, and R. C. Singh, "Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite," Sensors and Actuators B: Chemical, vol. 258, pp. 1022-1035, 2018.
[22] G.-J. Sun, H. Kheel, S. Park, S. Lee, S. Eon Park, and C. Lee, "Synthesis of TiO 2 nanorods decorated with NiO nanoparticles and their acetone sensing properties," Ceramics International, vol. 42, no. 1, pp. 1063-1069, 2016.
[23] S.-J. Young et al., "Multi-Walled Carbon Nanotubes Decorated with Silver Nanoparticles for Acetone Gas Sensing at Room Temperature," Journal of The Electrochemical Society, vol. 167, no. 16, 2020.
[24] N. L. W. Septiani and B. Yuliarto, "Review—The Development of Gas Sensor Based on Carbon Nanotubes," Journal of The Electrochemical Society, vol. 163, no. 3, pp. B97-B106, 2016.
[25] M. Lucci et al., "Optimization of a NOx gas sensor based on single walled carbon nanotubes," Sensors and Actuators B: Chemical, vol. 118, no. 1-2, pp. 226-231, 2006.
[26] X. Chen, C. K. Y. Wong, C. A. Yuan, and G. Zhang, "Nanowire-based gas sensors," Sensors and Actuators B: Chemical, vol. 177, pp. 178-195, 2013.
[27] N. Kobayashi, "Phthalocyanines," Current Opinion in Solid State and Materials Science, vol. 4, no. 4, pp. 345-353, 1999.
[28] N. Boileau, R. Cranston, B. Mirka, O. Melville, and B. Lessard, "Metal phthalocyanine organic thin-film transistors: changes in electrical performance and stability in response to temperature and environment," RSC Advances, vol. 9, pp. 21478-21485, 2019.
[29] C. Kuo, H. Lin, I. Lee, H. Cheng, and T. Huang, "A Novel Scheme for Fabricating CMOS Inverters With Poly-Si Nanowire Channels," IEEE Electron Device Letters, vol. 33, no. 6, pp. 833-835, 2012.
[30] M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungstrom, H. E. Nilsson, W. Xiong, B. Xu, Y. Li, and H. H. Radamson, "Silicon Nanowires for Gas Sensing: A Review," Nanomaterials (Basel), vol. 10, no. 11, 2020.
[31] T. Song, S.-T. Lee, and B. Sun, "Silicon nanowires for photovoltaic applications: The progress and challenge," Nano Energy, vol. 1, no. 5, pp. 654-673, 2012.
[32] B. Liu, X. Wang, H. Chen, Z. Wang, D. Chen, Y. B. Cheng, C. Zhou, and G. Shen, "Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries," Sci Rep, vol. 3, p. 1622, 2013.
[33] Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Yi Fan, K. D. Buddharaju, and J. Kong, "Silicon Nanowire Arrays for Label-Free Detection of DNA," Analytical Chemistry, vol. 79, no. 9, pp. 3291-3297, 2007.
[34] H. C. Lin, M. H. Lee, C. J. Su, T. Y. Huang, C. C. Lee, and Y. S. Yang, "A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel," IEEE Electron Device Letters, vol. 26, no. 9, pp. 643-645, 2005.
[35] Y. Wu and P. Yang, "Direct Observation of Vapor−Liquid−Solid Nanowire Growth," Journal of the American Chemical Society, vol. 123, no. 13, pp. 3165-3166, 2001.
[36] 徐睿杉, "醯胺類官能基提升多晶矽奈米線場效電晶體對氨氣感測之靈敏度," 碩士, 生醫工程研究所, 國立交通大學, 新竹市, 2015.
[37] C. H. Lin et al., "Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor," Chem Commun (Camb), no. 44, pp. 5749-51, 2008.
[38] C. Y. Hsiao et al., "Novel poly-silicon nanowire field effect transistor for biosensing application," Biosens Bioelectron, vol. 24, no. 5, pp. 1223-9, 2009.
[39] B. G. Streetman and S. K. Banerjee, Solid state electronic devices, 7th ed. Boston: Pearson (in English), 2016.
[40] D. A. Neamen, Semiconductor physics and devices : basic principles, 4th ed. New York: McGraw Hill (in English), 2012.
[41] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, "Threshold voltage extraction methods for MOS transistors," 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486), vol. 1, pp. 371-374 vol.1, 2000.
[42] A. Ortiz-Conde, F. J. Garcı́a Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics Reliability, vol. 42, no. 4, pp. 583-596, 2002.
[43] F. De Santiago, J. E. Santana, Á. Miranda, L. A. Pérez, R. Rurali, and M. Cruz-Irisson, "Silicon nanowires as acetone-adsorptive media for diabetes diagnosis," Applied Surface Science, vol. 547, p. 149175, 2021.
[44] 賴淳熙, "利用含氮官能基修飾多晶矽奈米線場效電晶體表面對氨氣感測之影響," 碩士, 顯示科技研究所, 國立交通大學, 新竹市, 2013.
[45] A. Farzaneh, M. D. Esrafili, and S. Okur, "Experimental and density functional theory study on humidity sensing properties of copper phthalocyanine (CuPc)," Materials Research Express, vol. 6, no. 10, 2019.
[46] M. K. Rana, M. Sinha, and S. Panda, "Gas sensing behavior of metal-phthalocyanines: Effects of electronic structure on sensitivity," Chemical Physics, vol. 513, pp. 23-34, 2018.
[47] O. Chamlek, S. Pratontep, T. Kerdcharoen, and T. Osotchan, "Spectroscopys Studies of Iron Phthalocyanine Thin Films," Advanced Materials Research, vol. 55-57, pp. 301-304, 2008.
[48] M. Righettoni, A. Tricoli, and S. E. Pratsinis, "Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis," Analytical Chemistry, vol. 82, no. 9, pp. 3581-3587, 2010.
[49] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors," Sensors (Basel), vol. 10, no. 3, pp. 2088-2106, 2010.
[50] H.-C. Lin, C.-J. Su, C.-Y. Hsiao, Y.-S. Yang, and T.-Y. Huang, "Water passivation effect on polycrystalline silicon nanowires," Applied Physics Letters, vol. 91, no. 20, 2007.
[51] Z. Su, J. Zhen, and D. L. J. R, "Catalytic Capacity of Transition Metal Phthalocyanine Complexes Based on Density Functional Theory," Journal of Shanghai Jiaotong University, vol. 51, no. 12, pp. 1422-1427, 2017.
[52] Y. Hu, H. Lee, S. Kim, and M. Yun, "A highly selective chemical sensor array based on nanowire/nanostructure for gas identification," Sensors and Actuators B: Chemical, vol. 181, pp. 424-431, 2013.
[53] N. X. Thai, N. Van Duy, C. M. Hung, H. Nguyen, M. Tonezzer, N. Van Hieu, and N. D. Hoa, "Prototype edge-grown nanowire sensor array for the real-time monitoring and classification of multiple gases," Journal of Science: Advanced Materials and Devices, vol. 5, no. 3, pp. 409-416, 2020.
[54] B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, "Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase," Nano Lett, vol. 14, no. 2, pp. 933-8, 2014.
電子全文 電子全文(網際網路公開日期:20261006)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top