[1] V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C. P. Liu, and B. Mwakikunga, "Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring," Diagnostics (Basel), vol. 8, no. 1, 2018.
[2] M. Steinbacher, J. Dommen, C. Ammann, C. Spirig, A. Neftel, and A. S. H. Prevot, "Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements," International Journal of Mass Spectrometry, vol. 239, no. 2-3, pp. 117-128, 2004.
[3] M. Shirasu and K. Touhara, "The scent of disease: volatile organic compounds of the human body related to disease and disorder," J Biochem, vol. 150, no. 3, pp. 257-66, 2011.
[4] A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, "Applications of breath gas analysis in medicine," International Journal of Mass Spectrometry, vol. 239, no. 2-3, pp. 227-233, 2004.
[5] C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, "Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization," J Chromatogr B Analyt Technol Biomed Life Sci, vol. 810, no. 2, pp. 269-75, 2004.
[6] P. Spanel, K. Dryahina, A. Rejskova, T. W. Chippendale, and D. Smith, "Breath acetone concentration; biological variability and the influence of diet," Physiol Meas, vol. 32, no. 8, pp. N23-31, 2011.
[7] S. W. Ryter and A. M. Choi, "Carbon monoxide in exhaled breath testing and therapeutics," J Breath Res, vol. 7, no. 1, p. 017111, 2013.
[8] N. T. Brannelly, J. P. Hamilton-Shield, and A. J. Killard, "The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics," Crit Rev Anal Chem, vol. 46, no. 6, pp. 490-501, 2016.
[9] R. Adrover, D. Cocozzella, E. Ridruejo, A. Garcia, J. Rome, and J. J. Podesta, "Breath-ammonia testing of healthy subjects and patients with cirrhosis," Dig Dis Sci, vol. 57, no. 1, pp. 189-95, 2012.
[10] R. Dweik, P. Boggs, S. Erzurum, C. Irvin, M. Leigh, J. Lundberg, A. Olin, A. Plummer, and D. Taylor, "An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications," American journal of respiratory and critical care medicine, vol. 184(5), pp. 602-15, 2011.
[11] A. D. Worrall, J. A. Bernstein, and A. P. Angelopoulos, "Portable method of measuring gaseous acetone concentrations," Talanta, vol. 112, pp. 26-30, 2013.
[12] P. Amlendu et al., "Breath Acetone as Biomarker for Lipid Oxidation and Early Ketone Detection," Global Journal of Obesity, Diabetes and Metabolic Syndrome, vol. 1, no. 1, pp. 012-019, 2014.
[13] H. Nazemi, A. Joseph, J. Park, and A. Emadi, "Advanced Micro- and Nano-Gas Sensor Technology: A Review," Sensors (Basel), vol. 19, no. 6, 2019.
[14] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology," Sensors (Basel), vol. 12, no. 7, pp. 9635-65, 2012.
[15] B. K. Paul et al., "Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber," Alexandria Engineering Journal, vol. 59, no. 6, pp. 5045-5052, 2020.
[16] M. R. Eslami and N. Alizadeh, "Ultrasensitive and selective QCM sensor for detection of trace amounts of nitroexplosive vapors in ambient air based on polypyrrole—Bromophenol blue nanostructure," Sensors and Actuators B: Chemical, vol. 278, pp. 55-63, 2019.
[17] H. Bai and G. Shi, "Gas Sensors Based on Conducting Polymers," Sensors, vol. 7, no. 3, pp. 267-307, 2007.
[18] K. Manoli, L. M. Dumitru, M. Y. Mulla, M. Magliulo, C. Di Franco, M. V. Santacroce, G. Scamarcio, and L. Torsi, "A comparative study of the gas sensing behavior in P3HT- and PBTTT-based OTFTs: the influence of film morphology and contact electrode position," Sensors (Basel), vol. 14, no. 9, pp. 16869-80, 2014.
[19] L. Zhu, W. Zeng, and Y. Li, "A novel cactus-like WO3-SnO2 nanocomposite and its acetone gas sensing properties," Materials Letters, vol. 231, pp. 5-7, 2018.
[20] P. Wang, T. Dong, C. Jia, and P. Yang, "Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet," Sensors and Actuators B: Chemical, vol. 288, pp. 1-11, 2019.
[21] J. Kaur, K. Anand, A. Kaur, and R. C. Singh, "Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite," Sensors and Actuators B: Chemical, vol. 258, pp. 1022-1035, 2018.
[22] G.-J. Sun, H. Kheel, S. Park, S. Lee, S. Eon Park, and C. Lee, "Synthesis of TiO 2 nanorods decorated with NiO nanoparticles and their acetone sensing properties," Ceramics International, vol. 42, no. 1, pp. 1063-1069, 2016.
[23] S.-J. Young et al., "Multi-Walled Carbon Nanotubes Decorated with Silver Nanoparticles for Acetone Gas Sensing at Room Temperature," Journal of The Electrochemical Society, vol. 167, no. 16, 2020.
[24] N. L. W. Septiani and B. Yuliarto, "Review—The Development of Gas Sensor Based on Carbon Nanotubes," Journal of The Electrochemical Society, vol. 163, no. 3, pp. B97-B106, 2016.
[25] M. Lucci et al., "Optimization of a NOx gas sensor based on single walled carbon nanotubes," Sensors and Actuators B: Chemical, vol. 118, no. 1-2, pp. 226-231, 2006.
[26] X. Chen, C. K. Y. Wong, C. A. Yuan, and G. Zhang, "Nanowire-based gas sensors," Sensors and Actuators B: Chemical, vol. 177, pp. 178-195, 2013.
[27] N. Kobayashi, "Phthalocyanines," Current Opinion in Solid State and Materials Science, vol. 4, no. 4, pp. 345-353, 1999.
[28] N. Boileau, R. Cranston, B. Mirka, O. Melville, and B. Lessard, "Metal phthalocyanine organic thin-film transistors: changes in electrical performance and stability in response to temperature and environment," RSC Advances, vol. 9, pp. 21478-21485, 2019.
[29] C. Kuo, H. Lin, I. Lee, H. Cheng, and T. Huang, "A Novel Scheme for Fabricating CMOS Inverters With Poly-Si Nanowire Channels," IEEE Electron Device Letters, vol. 33, no. 6, pp. 833-835, 2012.
[30] M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungstrom, H. E. Nilsson, W. Xiong, B. Xu, Y. Li, and H. H. Radamson, "Silicon Nanowires for Gas Sensing: A Review," Nanomaterials (Basel), vol. 10, no. 11, 2020.
[31] T. Song, S.-T. Lee, and B. Sun, "Silicon nanowires for photovoltaic applications: The progress and challenge," Nano Energy, vol. 1, no. 5, pp. 654-673, 2012.
[32] B. Liu, X. Wang, H. Chen, Z. Wang, D. Chen, Y. B. Cheng, C. Zhou, and G. Shen, "Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries," Sci Rep, vol. 3, p. 1622, 2013.
[33] Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Yi Fan, K. D. Buddharaju, and J. Kong, "Silicon Nanowire Arrays for Label-Free Detection of DNA," Analytical Chemistry, vol. 79, no. 9, pp. 3291-3297, 2007.
[34] H. C. Lin, M. H. Lee, C. J. Su, T. Y. Huang, C. C. Lee, and Y. S. Yang, "A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel," IEEE Electron Device Letters, vol. 26, no. 9, pp. 643-645, 2005.
[35] Y. Wu and P. Yang, "Direct Observation of Vapor−Liquid−Solid Nanowire Growth," Journal of the American Chemical Society, vol. 123, no. 13, pp. 3165-3166, 2001.
[36] 徐睿杉, "醯胺類官能基提升多晶矽奈米線場效電晶體對氨氣感測之靈敏度," 碩士, 生醫工程研究所, 國立交通大學, 新竹市, 2015.[37] C. H. Lin et al., "Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor," Chem Commun (Camb), no. 44, pp. 5749-51, 2008.
[38] C. Y. Hsiao et al., "Novel poly-silicon nanowire field effect transistor for biosensing application," Biosens Bioelectron, vol. 24, no. 5, pp. 1223-9, 2009.
[39] B. G. Streetman and S. K. Banerjee, Solid state electronic devices, 7th ed. Boston: Pearson (in English), 2016.
[40] D. A. Neamen, Semiconductor physics and devices : basic principles, 4th ed. New York: McGraw Hill (in English), 2012.
[41] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, "Threshold voltage extraction methods for MOS transistors," 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486), vol. 1, pp. 371-374 vol.1, 2000.
[42] A. Ortiz-Conde, F. J. Garcı́a Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics Reliability, vol. 42, no. 4, pp. 583-596, 2002.
[43] F. De Santiago, J. E. Santana, Á. Miranda, L. A. Pérez, R. Rurali, and M. Cruz-Irisson, "Silicon nanowires as acetone-adsorptive media for diabetes diagnosis," Applied Surface Science, vol. 547, p. 149175, 2021.
[44] 賴淳熙, "利用含氮官能基修飾多晶矽奈米線場效電晶體表面對氨氣感測之影響," 碩士, 顯示科技研究所, 國立交通大學, 新竹市, 2013.[45] A. Farzaneh, M. D. Esrafili, and S. Okur, "Experimental and density functional theory study on humidity sensing properties of copper phthalocyanine (CuPc)," Materials Research Express, vol. 6, no. 10, 2019.
[46] M. K. Rana, M. Sinha, and S. Panda, "Gas sensing behavior of metal-phthalocyanines: Effects of electronic structure on sensitivity," Chemical Physics, vol. 513, pp. 23-34, 2018.
[47] O. Chamlek, S. Pratontep, T. Kerdcharoen, and T. Osotchan, "Spectroscopys Studies of Iron Phthalocyanine Thin Films," Advanced Materials Research, vol. 55-57, pp. 301-304, 2008.
[48] M. Righettoni, A. Tricoli, and S. E. Pratsinis, "Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis," Analytical Chemistry, vol. 82, no. 9, pp. 3581-3587, 2010.
[49] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors," Sensors (Basel), vol. 10, no. 3, pp. 2088-2106, 2010.
[50] H.-C. Lin, C.-J. Su, C.-Y. Hsiao, Y.-S. Yang, and T.-Y. Huang, "Water passivation effect on polycrystalline silicon nanowires," Applied Physics Letters, vol. 91, no. 20, 2007.
[51] Z. Su, J. Zhen, and D. L. J. R, "Catalytic Capacity of Transition Metal Phthalocyanine Complexes Based on Density Functional Theory," Journal of Shanghai Jiaotong University, vol. 51, no. 12, pp. 1422-1427, 2017.
[52] Y. Hu, H. Lee, S. Kim, and M. Yun, "A highly selective chemical sensor array based on nanowire/nanostructure for gas identification," Sensors and Actuators B: Chemical, vol. 181, pp. 424-431, 2013.
[53] N. X. Thai, N. Van Duy, C. M. Hung, H. Nguyen, M. Tonezzer, N. Van Hieu, and N. D. Hoa, "Prototype edge-grown nanowire sensor array for the real-time monitoring and classification of multiple gases," Journal of Science: Advanced Materials and Devices, vol. 5, no. 3, pp. 409-416, 2020.
[54] B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, "Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase," Nano Lett, vol. 14, no. 2, pp. 933-8, 2014.