跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江欣諭
研究生(外文):JIANG, XIN-YU
論文名稱:利用近紅外光-洋蔥廢棄物生物炭降解水中偶氮染料Reactive Black 5及其毒性效應之研究
論文名稱(外文):Removal of Reactive Black 5 from Aqueous Solution by Onion Waste Biochar under NIR irradiation and Toxicity of waste effluents
指導教授:林家驊
指導教授(外文):LIN, CHIA-HUA
口試委員:林坤儀陳谷汎
口試委員(外文):LIN, KUN-YICHEN, KU-FAN
口試日期:2022-07-26
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:42
中文關鍵詞:活性黑5生物炭染料吸附人類內皮細胞近紅外光
外文關鍵詞:Reactive Black 5(RB5)biochardye adsorptionhuman endothelial cells (EA.hy926)Near Infrared(NIR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  活性黑5(Reactive Black 5, RB5)這種偶氮染料大量存在於發展中國家的水道中,並影響了生態系統和人類。RB5是一種廣泛用於紡織品的偶氮染料,相較於其他染料,偶氮染料約佔所有活性染料的 50%。是環境中的持久性化合物,其具有毒性、致癌性、致突變性或致畸性。在這項研究中,我們透過不同溫度將台灣常見的農業殘留物-洋蔥皮,燒結製成洋蔥皮生物炭 (onion skin-based biochars,OSBs)。並結合近紅外光(NIR)之光熱升溫技術處理有害染料廢水。本實驗之OSB是由洋蔥皮在密閉環境下加入氮氣分別利用500℃(OSB500)、600℃(OSB600) 700℃(OSB700) 熱解而成。本研究主要目的包括:(1)評估洋蔥皮生物炭在不同鍛燒溫度條件下對水中RB5之移除能力;(2)評估洋蔥皮生物炭結合NIR升溫對水中RB5移除之能力;(3)評估洋蔥皮生物炭及RB5對人類內皮細胞(EA.hy926)之毒性;及(4)研發兼具吸附性與安全性之系統處理水中RB5等污染物。實驗結果顯示,OSB700的RB5去除率高於OSB500和OSB600。由於RB5具有毒性,因此利用人類內皮細胞(EA.hy926)進行毒性測試。經實驗結果得知,OSBs本身對細胞無顯著毒性,然而RB5會對細胞造成損傷。研究亦發現,OSB700結合NIR之光熱升溫技術,能有效提高RB5之去除率,並進而降低污染物對環境的危害,同時降低其在人類內皮細胞(EA.hy926)中的細胞毒性潛力。經由上述結果顯示,洋蔥皮生物炭作為去除RB5染劑之低成本吸附劑具有相當大的潛力。此外,NIR照射不僅能讓RB5降解。當生物炭搭配NIR照射,使其升溫至70℃時,能有效增加吸附效果及降低細胞毒性。
  Related studies indicate that Reactive Black 5 (RB5), an azo dye, is released a large quantity in water systems in developing countries, affecting ecosystems and humans. RB5 is an azo dye widely used in textiles. Besides, azo dyes constitute about 50% of all reactive dyes. They are persistent compounds in the environment, which are toxic, carcinogenic, mutagenicity or teratogenicity. In this study, onion skin, a common agricultural residue in Taiwan, was sintered into biochar at different temperatures. By combined onion skin-based biochars (OSBs) with near-infrared (NIR), we used photothermal heating technology to treat wastewater that has harmful dye in a cost-effective and eco-friendly method. The OSBs were pyrolysis in N2 under 500 °C (OSB500), 600 °C (OSB600) and 700 °C (OSB700). The main objectives of this study include: (1) to evaluate the ability of OSBs its RB5 removal efficiency under different temperature conditions; (2) to evaluate the ability of OSBs combined with NIR heating to remove RB5 from aqueous solutions; (3) to evaluate the toxicity of both OSBs and RB5 to human endothelial cells (EA.hy926); and (4) to develop a system that is safety and with great adsorption ability to treat pollutants such as RB5 in aquatic environments . In our experiments, the results of OSB700 showed a greater removal capability than OSB500 and OSB60. And EA.hy926 cells were used on the toxicity, the results showed that OSBs are biocompatible. However, RB5 would cause damage to the cells. We also found that OSB700 irradiated with NIR, the RB5 removal efficiency would increase, and RB5 cytotoxic potential in EA.hy926 cells would decrease. Above results suggest that the onion skin has a considerable potential as a low-cost sorbent for removing RB5 from the aqueous phase. Furthermore, NIR irradiation not only degrades RB5. When biochar is heated to 70 °C with NIR irradiation, it can effectively increase the adsorption effect and reduce the cytotoxicity.
摘要………i
Abstract………ii
誌謝………iv
目錄………v
表目錄………vii
圖目錄………viii
縮寫對照表………ix
第一章 緒論………1
1-1研究緣起………1
1-2研究目的………1
第二章 文獻回顧………2
2-1 紡織業&偶氮染料………2
2-2生物炭………4
2-2-1生物炭之定義………4
2-2-2生物炭之應用………4
2-2-3生物炭去除廢水中污染物的影響因素………5
2-3 NIR特性與應用………7
2-4 NIR照射碳材之功能………8
第三章 實驗架構與材料方法………9
3-1實驗架構圖………9
3-2實驗材料………9
3-2-1實驗器材………9
3-2-2實驗藥品………10
3-2-3實驗細胞………11
3-3實驗方法………12
3-3-1 洋蔥皮前處理………12
3-3-2 洋蔥皮生物炭製備………12
3-3-3 場發射掃描式電子顯微鏡(FE-SEM)………12
3-3-4 比表面積與孔隙度分析儀(BET)………12
3-3-5 傅立葉轉換紅外光譜(FTIR)………12
3-3-6 表面電位分析測定 (Zeta potential)………13
3-3-7 分光光度計測RB5不同濃度測吸光值拉標準曲線………13
3-3-8 不同燒結溫度之洋蔥皮生物炭吸附RB5………13
3-3-9 洋蔥皮生物炭升溫(NIR)………14
3-3-10 不同操作方法對洋蔥皮生物炭吸附RB5之影響………14
3-3-11 高濃度之RB5在不同操作條件下對洋蔥皮生物炭之吸附影響………15
3-3-12 細胞培養………16
3-3-13 細胞毒性試驗(MTT assay)………16
3-3-14 不同操作條件下高濃度RB5(1000 ppm)之濃度變化………16
3-3-15 統計分析………17
第四章 結果與討論………18
4-1洋蔥皮生物炭之物化分析………18
4-1-1 場發射掃描式電子顯微鏡(FE-SEM)………18
4-1-2 比表面積與孔隙度分析儀 (BET)………18
4-1-3 傅立葉轉換紅外光譜測定(FTIR)………19
4-1-4 不同燒結溫度之洋蔥皮生物炭吸附RB5………20
4-1-4 不同燒結溫度之洋蔥皮生物炭吸附RB5………20
4-2 材料 (洋蔥皮生物炭&RB5)之毒性評估………21
4-2-1 洋蔥皮生物炭之細胞毒性試驗 (EA.hy926)………21
4-2-2 RB5之細胞毒性試驗 (EA.hy926)………21
4-3不同操作條件對洋蔥皮生物炭吸附RB5之影響………22
4-3-1 RB5溶液之pH值………22
4-3-2 在不同pH值 (pH 3、pH 7、pH 11)下洋蔥皮生物炭之表面電位………22
4-3-3 RB5初始濃度………23
4-3-4 溫度………24
4-3-5 5W/cm2 NIR照射洋蔥皮生物炭之升溫………25
4-4不同操作條件對洋蔥皮生物炭吸附高濃度RB5之影響及細胞毒性試驗………26
4-4-1不同操作條件對高濃度RB5 (1000 ppm)之濃度變化………26
4-4-2不同操作條件對洋蔥皮生物炭吸附高濃度RB5 (1000 ppm)之影響………27
4-4-3不同操作條件對洋蔥皮生物炭吸附高濃度RB5之細胞毒性試驗………28
第五章 結論………29
參考文獻………30
Extended Abstract………36
1.Munagapati, V.S., et al., Adsorptive removal of anionic dye (Reactive Black 5) from aqueous solution using chemically modified banana peel powder: kinetic, isotherm, thermodynamic, and reusability studies. International Journal of Phytoremediation, 2020. 22(3): p. 267-278.
2.Ranjbari, S., et al., Novel Aliquat-336 impregnated chitosan beads for the adsorptive removal of anionic azo dyes. International Journal of Biological Macromolecules, 2019. 125: p. 989-998.
3.Crini, G., Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 2006. 97(9): p. 1061-1085.
4.Moussavi, G. and M. Mahmoudi, Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 2009. 168(2): p. 806-812.
5.Samsami, S., et al., Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 2020. 143: p. 138-163.
6.Iscen, C.F., I. Kiran, and S. Ilhan, Biosorption of Reactive Black 5 dye by Penicillium restrictum: The kinetic study. Journal of Hazardous Materials, 2007. 143(1): p. 335-340.
7.Park, H. and W. Choi, Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 159(3): p. 241-247.
8.Al-Degs, Y.S., et al., Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 2008. 77(1): p. 16-23.
9.El-Zawahry, M.M., et al., Equilibrium and kinetic models on the adsorption of Reactive Black 5 from aqueous solution using Eichhornia crassipes/chitosan composite. Carbohydrate Polymers, 2016. 136: p. 507-515.
10.Horvat, A.J.M., et al., Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends in Analytical Chemistry, 2012. 31: p. 61-84.
11.McMullan, G., et al., Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 2001. 56(1): p. 81-87.
12.Pearce, C.I., J.R. Lloyd, and J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 2003. 58(3): p. 179-196.
13.Myslak, Z.W., H.M. Bolt, and W. Brockmann, Tumors of the urinary bladder in painters: A case‐control study. American journal of industrial medicine, 1991. 19(6): p. 705-713.
14.Alves de Lima, R.O., et al., Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2007. 626(1): p. 53-60.
15.Huang, J., et al., Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: Kinetics, capacity and mechanism studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 492: p. 242-248.
16.Manimaran, D., A. Sulthana, and N. Elangovan, Reactive black 5 induced developmental defects via potentiating apoptotic cell death in Zebrafish (Danio rerio) embryos. Pharm Pharmacol Int J, 2018. 6(6): p. 449-452.
17.Tang, J., et al., Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 2013. 116(6): p. 653-659.
18.Liqun, X., et al., Heat Storage Capacity and Temporal-spatial Response in the Soil Temperature of Albic Soil Amended with Maize-derived Biochar for 2 Years. Soil and Tillage Research, 2021. 205: p. 104762.
19.Chen, B., D. Zhou, and L. Zhu, Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures. Environmental Science & Technology, 2008. 42(14): p. 5137-5143.
20.Uchimiya, M., et al., Immobilization of Heavy Metal Ions (CuII, CdII, NiII, and PbII) by Broiler Litter-Derived Biochars in Water and Soil. Journal of Agricultural and Food Chemistry, 2010. 58(9): p. 5538-5544.
21.Uchimiya, M., et al., Influence of Pyrolysis Temperature on Biochar Property and Function as a Heavy Metal Sorbent in Soil. Journal of Agricultural and Food Chemistry, 2011. 59(6): p. 2501-2510.
22.Keiluweit, M., et al., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 2010. 44(4): p. 1247-1253.
23.Gupta, S., G.K. Gupta, and M.K. Mondal, Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis. Energy, 2019. 181: p. 665-676.
24.Wang, Z., et al., Influence of the Addition of Cotton Stalk during Co-pyrolysis with Sewage Sludge on the Properties, Surface Characteristics, and Ecological Risks of Biochars. Journal of Thermal Science, 2019. 28(4): p. 755-762.
25.Xie, T., et al., Characteristics and Applications of Biochar for Environmental Remediation: A Review. Critical Reviews in Environmental Science and Technology, 2015. 45(9): p. 939-969.
26.Ahirwar, U., et al., Interactive effect of climate factors, biochar and insecticide chlorpyrifos on methane consumption and microbial abundance in a tropical Vertisol. Ecotoxicology and Environmental Safety, 2018. 157: p. 409-416.
27.Pukalchik, M., et al., Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: Evidence from an integrative approach. Chemosphere, 2018. 203: p. 228-238.
28.Trakal, L., et al., AMOchar: Amorphous manganese oxide coating of biochar improves its efficiency at removing metal(loid)s from aqueous solutions. Science of The Total Environment, 2018. 625: p. 71-78.
29.Zhang, X., et al., Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresource Technology, 2020. 296: p. 122318.
30.Biederman, L.A. and W.S. Harpole, Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 2013. 5(2): p. 202-214.
31.Sohi, S.P., et al., A review of biochar and its use and function in soil. Advances in agronomy, 2010. 105: p. 47-82.
32.Kammann, C.I., et al., Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and Soil, 2011. 345(1): p. 195-210.
33.Burrell, L.D., et al., Long-term effects of biochar on soil physical properties. Geoderma, 2016. 282: p. 96-102.
34.Abu-Hamdeh, N.H. and R.C. Reeder, Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil science society of America Journal, 2000. 64(4): p. 1285-1290.
35.Eggleston, S., et al., IPCC guidelines for national greenhouse gas inventories. 2006.
36.Jain, A.K. and J.R. Goss, Determination of reactor scaling factors for throatless rice husk gasifier. Biomass and Bioenergy, 2000. 18(3): p. 249-256.
37.Gai, C., Y. Dong, and T. Zhang, Distribution of sulfur species in gaseous and condensed phase during downdraft gasification of corn straw. Energy, 2014. 64: p. 248-258.
38.Wang, D., et al., Biochar production and applications in agro and forestry systems: A review. Science of The Total Environment, 2020. 723: p. 137775.
39.Karakoyun, N., et al., Hydrogel–Biochar composites for effective organic contaminant removal from aqueous media. Desalination, 2011. 280(1): p. 319-325.
40.Wu, L., B. Li, and M. Liu, Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars. Chemosphere, 2018. 210: p. 239-246.
41.Tan, X., et al., Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015. 125: p. 70-85.
42.Ahmad, A.A., A. Idris, and B.H. Hameed, Organic dye adsorption on activated carbon derived from solid waste. Desalination and Water Treatment, 2013. 51(13-15): p. 2554-2563.
43.Nguyen, T.T., et al., Development of Biochars Derived from Water Bamboo (Zizania latifolia) Shoot Husks Using Pyrolysis and Ultrasound-Assisted Pyrolysis for the Treatment of Reactive Black 5 (RB5) in Wastewater. Water, 2021. 13(12).
44.Liu, Z. and F.-S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 2009. 167(1): p. 933-939.
45.Sashidhar, P., et al., Biochar for delivery of agri-inputs: Current status and future perspectives. Science of The Total Environment, 2020. 703: p. 134892.
46.Qiu, Y., et al., Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Research, 2008. 42(3): p. 567-574.
47.Kapoor, R.T., et al., Removal of Reactive Black 5 Dye by Banana Peel Biochar and Evaluation of Its Phytotoxicity on Tomato. Sustainability, 2022. 14(7).
48.Ahmad, M., et al., Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014. 99: p. 19-33.
49.Dong, X., L.Q. Ma, and Y. Li, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 2011. 190(1): p. 909-915.
50.Bakht Shokouhi, S., et al., Activated carbon catalyzed ozonation (ACCO) of Reactive Blue 194 azo dye in aqueous saline solution: Experimental parameters, kinetic and analysis of activated carbon properties. Journal of Water Process Engineering, 2020. 35: p. 101188.
51.Zhang, M., et al., Removal of phosphate from water by paper mill sludge biochar. Environmental Pollution, 2022. 293: p. 118521.
52.Yang, J., et al., Spatially confined fabrication of core–shell gold nanocages@ mesoporous silica for near-infrared controlled photothermal drug release. Chemistry of Materials, 2013. 25(15): p. 3030-3037.
53.Antaris, A.L., et al., A small-molecule dye for NIR-II imaging. Nature materials, 2016. 15(2): p. 235-242.
54.Zhang, Y., et al., Acid-responsive polymeric doxorubicin prodrug nanoparticles encapsulating a near-infrared dye for combined photothermal-chemotherapy. Chemistry of Materials, 2016. 28(19): p. 7039-7050.
55.Huschka, R., et al., Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. Journal of the American Chemical Society, 2011. 133(31): p. 12247-12255.
56.Geng, J., et al., Biocompatible conjugated polymer nanoparticles for efficient photothermal tumor therapy. Small, 2015. 11(13): p. 1603-1610.
57.Chen, C.-J. and D.-H. Chen, Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles. Nanoscale Research Letters, 2013. 8(1): p. 57.
58.Cao, Y., et al., Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer. Chemistry of Materials, 2017. 29(2): p. 718-725.
59.Sun, T., et al., Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2018. 10(9): p. 7919-7926.
60.Jin, C., et al., Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. Materials & Design, 2019. 177: p. 107845.
61.Cheng, X., et al., Light‐triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Advanced Materials, 2017. 29(6): p. 1604894.
62.Du, T., et al., NIR-activated multi-hit therapeutic Ag2S quantum dot-based hydrogel for healing of bacteria-infected wounds. Acta Biomaterialia, 2022. 145: p. 88-105.
63.Chu, X., et al., Near-infrared carbon dot-based platform for bioimaging and photothermal/photodynamic/quaternary ammonium triple synergistic sterilization triggered by single NIR light source. Carbon, 2021. 176: p. 126-138.
64.Tsiper, S., et al., Sparsity-Based Super Resolution for SEM Images. Nano Letters, 2017. 17(9): p. 5437-5445.
65.Vaghri, E., Z. Khalaj, and M. Ghoranneviss, Preparation and characterization of diamond-like carbon films on various substrates by PECVD system. Studia Univ Babes-Bolyai Chemia, 2012. 57: p. 143-150.
66.Mandal, S., G. Shaw, and O.A. Williams, Comparison of nanodiamond coated quartz filter with commercial electropositive filters: Zeta potential and dye retention study. Carbon, 2022.
67.Meerloo, J.V., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay, in Cancer cell culture. 2011, Springer. p. 237-245.
68.Sbizzaro, M., et al., Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems. Journal of Molecular Liquids, 2021. 343: p. 117667.
69.Ke, Y., et al., Effects of pyrolysis temperature and aging treatment on the adsorption of Cd2+ and Zn2+ by coffee grounds biochar. Chemosphere, 2022. 296: p. 134051.
70.Yang, H., et al., Effect of pyrolysis conditions on food waste conversion to biochar as a coagulant aid for wastewater treatment. Journal of Water Process Engineering, 2021. 41: p. 102081.
71.De Luca, P. and J. B. Nagy, Treatment of Water Contaminated with Reactive Black-5 Dye by Carbon Nanotubes. Materials, 2020. 13(23).
電子全文 電子全文(網際網路公開日期:20270901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top