跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 03:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫浩峻
研究生(外文):SUN, HAO-JUN
論文名稱:應用於在線式無人搬運載具之無線電能取電模組設計
論文名稱(外文):Design of Wireless Power Pick-Up Module for On-Line Automatic Guided Vehicles
指導教授:陳建璋陳建璋引用關係
指導教授(外文):CHEN, CHIEN-CHANG
口試委員:覺文郁沈金鐘陳建璋
口試委員(外文):JYWE, WEN-YUHSHEN, JING-CHUNGCHEN, CHIEN-CHANG
口試日期:2022-01-06
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:49
中文關鍵詞:在線式電動車取電模組有限元素分析
外文關鍵詞:On-line Electric VehiclesPick-up ModuleFinite Element Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在線式電動車(On-line Electric Vehicles)是以無線電力傳輸進行在線式供電電動載具,解除了電動載具上的大容量電池限制及改變了有線傳輸的束縛,像是拿掉了集電弓仍然可以行走的電車,對於安全性、空間利用與景觀都有所改善,雖然在線式電動車要實行在自用車輛上還有經濟層面上的諸多問題,但運用在固定行駛路線的大眾運輸或是智慧工廠中的無人搬運載具上的進展是相當令人期待的,尤其在電動載具依然存在諸多疑慮的情況下,如電池價格、電池壽命、行駛距離、充電速度、充電站便利性,當智慧工廠中的無人搬運載具不再仰賴電池供電,這意味著不再需要擔心電池耗盡而停下進行充電,也代表工廠無人搬運載具的稼動率大大提升,而在線式電動車所遭受的質疑是接收效率與建置成本,但在國內外文獻中可以得知,已有研究團隊提出效率達到90%的在線式電動車,而電源建置部分也有對其進行優化的相關文獻。因此,本研究針對智慧工廠中的無人搬運載具提出兩種不同類型的取電模組,第一種是近磁感應式的無線電力傳輸取電模組設計,此形式的載具如半導體廠內使用的空中走行式無人搬運車(Overhead Hoist Transfer,OHT),載具會行走於軌道上,但電力的傳輸是無線的,供電電纜經由取電模組進行耦合達成電力傳輸但兩者之間並未接觸,以常見的E型與H型取電模組進行改良與比較,結果中顯示改良後的取電模組耦合效果有著明顯增加,接著進行供電電纜中心距離的調整觀察取電模組的耦合狀況並使其達到最佳化,第二種是平面式的無線電力傳輸取電模組設計,供電電纜裝置於地面或是地底,接著在載具底盤裝上取電模組的方式進行無線電力傳輸,此種形式的傳輸方式難度較高,因為通常供電電纜與取電模組之間的氣隙距離較大,造成的磁漏較為嚴重,所以耦合效果較低,在本研究中提出一種橢圓接收線圈並且含有補償線圈,藉由補償線圈減緩線圈中心磁漏來提升耦合效果,且在氣隙5 cm的情況下補償線圈接收的磁通密度強度高於接收線圈42%,最後,兩種接收線圈的設計皆經由有限元素分析進行模擬,並對其結果進行分析與改善,結果顯示兩種類型的取電模組其耦合取電效能都有所增加。
Online electric vehicles are electric vehicles achieving online charging in a wireless power transmission mode. Requiring no high-capacity batteries or wired power transmission, such as tram that can operate without a pantograph. As a result, safety, space utilization and sightseeing are improved. Although their applications in private vehicles are exposed to various problems at the economic level, online electric vehicles are promising in mass transportation on fixed routes and automatic guided vehicles in smart factories. Currently, electric vehicles are limited in battery price, battery life, endurance mileage, charging rate, accessibility of charging stations. When automatic guided vehicles in smart factories do not have to stop working for battery charging, the activation of these vehicles is significantly enhanced. Nevertheless, existing online electric vehicles are in doubt about receiving efficiency and manufacturing cost. Fortunately, an online electric vehicle with a receiving efficiency of 90% and optimized the manufacturing of power supply has been proposed by literature. In this study, two wireless power pick-up modules are proposed for automatic guided vehicles in smart factories. The first module is a near-magnetic induction wireless power transmission; an example is overhead hoist transfer (OHT) in semiconductor factories. In this case, vehicles move on the track, while the power transmission is wireless. Magnetic coupling between power supply cables and the wireless power pick-up module achieve power transmission, but they have no physical contact. In this study, common E- and H-type wireless power pick-up modules are improved and compared, of which results indicate that the coupling effect of the improved wireless power pick-up module is significantly enhanced. Then, the center distance of power supply cable is tuned to optimize the coupling effect of the wireless power pick-up module. The second module is a planar wireless power transmission. In this case, power supply cables are installed on or under the ground and a wireless power pick-up module is installed on the vehicle chassis for wireless power transmission. This transmission mode is highly challenging as the air-gap distance between power supply cable and wireless power pick-up module is typically large and the induced magnetic leakage is typically severe. As a result, the coupling effect is limited. In this study, we propose an oval receiving coil with compensation coil. Herein, the magnetic leakage at the coil center is relieved by the compensation coil to enhance the coupling effect. At an air-gap of 5 cm, magnetic flux density received by the compensation coil is 42% higher than that received by the receiving coil. Additionally, the two proposed receiving coils are simulated by finite element analysis and the results are analyzed and improved. The results demonstrate that the coupling power receiving efficiency of both wireless power pick-up modules is improved.
摘要....................................i
Abstract...............................ii
誌謝...................................iv
目錄....................................v
表目錄.................................vi
圖目錄................................vii
符號說明...............................ix
第一章 緒論.............................1
1.1 動機與目的..........................1
1.2 研究背景............................2
1.3 文獻回顧............................3
1.4 論文架構............................4
第二章 在線式電動車原理..................5
2.1 磁感應式電能傳輸原理.................5
2.2 無線電能傳輸介紹.....................8
2.3 在線式電動車介紹.....................9
2.4 集膚效應 (Skin effect)..............10
第三章 磁感應式電能傳輸有限元素分析.......11
3.1 在線式磁感應電能傳輸系統基本架構......11
3.2 在線式磁感應電能傳輸有限元素分析......13
3.2.1 近磁感應式取電模組有限元素分析......13
3.2.2 平面式取電模組有限元素分析..........16
3.3 在線式磁感應電能傳輸有限元素分析結果...19
3.3.1 近磁感應式取電模組有限元素分析結果...19
3.3.2 平面式取電模組有限元素分析結果......25
3.4 有限元素分析結果討論.................43
第四章 結論與未來展望....................44
4.1 結論...............................44
4.2 未來展望...........................44
參考文獻...............................45
Extended Abstract.....................48
[1]S. Ahn et al., “Low frequency electromagnetic field reduction techniques for the On-Line Electric Vehicle (OLEV),” 2010 IEEE International Symposium on Electromagnetic Compatibility, pp. 625-630, 2010.
[2]J. Kim et al., “Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System,” in Proceedings of the IEEE, vol. 101, no. 6, pp. 1332-1342, June 2013.
[3]S. Huang, T. Lee, W. Li and R. Chen, “Modular On-Road AGV Wireless Charging Systems Via Interoperable Power Adjustment,” in IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 5918-5928, Aug. 2019.
[4]J. G. Bolger, “Urban electric transportation systems: the role of magnetic power transfer,” Proceedings of WESCON '94, pp. 41-45, 1994.
[5]M. Budhia, G. A. Covic and J. T. Boys, “Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems,” in IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[6]M. Budhia, G. Covic and J. Boys, “A new IPT magnetic coupler for electric vehicle charging systems,” IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 2487-2492, 2010.
[7]G. A. Covic, M. L. G. Kissin, D. Kacprzak, N. Clausen and H. Hao, “A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling,” 2011 IEEE Energy Conversion Congress and Exposition, pp. 1832-1838, 2011.
[8]M. Budhia, J. T. Boys, G. A. Covic and C. Huang, “Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems,” in IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318-328, Jan. 2013.
[9]Chwei-Sen Wang, O. H. Stielau and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[10]S. Y. Choi, B. W. Gu, S. Y. Jeong and C. T. Rim, “Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 18-36, March 2015.
[11]S. Lee, J. Huh, C. Park, N. Choi, G. Cho and C. Rim, “On-Line Electric Vehicle using inductive power transfer system,” 2010 IEEE Energy Conversion Congress and Exposition, pp. 1598-1601, 2010.
[12]J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho and C. T. Rim, “Narrow-Width Inductive Power Transfer System for Online Electrical Vehicles,” in IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3666-3679, Dec. 2011.
[13]S. Y. Choi, S. Y. Jeong, B. W. Gu, G. C. Lim and C. T. Rim, “Ultraslim S-Type Power Supply Rails for Roadway-Powered Electric Vehicles,” in IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6456-6468, Nov. 2015.
[14]O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White and L. E. Seiber, “A novel wireless power transfer for in-motion EV/PHEV charging,” 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3073-3080, 2013.
[15]T. Nguyen, S. Li, W. Li and C. C. Mi, “Feasibility study on bipolar pads for efficient wireless power chargers,” 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, pp. 1676-1682, 2014.
[16]C. Zheng et al., “High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March 2015.
[17]H. H. Wu, A. Gilchrist, K. Sealy and D. Bronson, “A 90 percent efficient 5kW inductive charger for EVs,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 275-282, 2012.
[18]R. Bosshard, J. W. Kolar and B. Wunsch, “Accurate finite-element modeling and experimental verification of inductive power transfer coil design,” 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, pp. 1648-1653, 2014.
[19]H. Kim, C. Song, J. Kim, J. Kim and J. Kim, “Shielded coil structure suppressing leakage magnetic field from 100W-class wireless power transfer system with higher efficiency,” 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, pp. 83-86, 2012.
[20]M. Kim, H. Kim, D. Kim, Y. Jeong, H. Park and S. Ahn, “A Three-Phase Wireless-Power-Transfer System for Online Electric Vehicles With Reduction of Leakage Magnetic Fields,” in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 11, pp. 3806-3813, Nov. 2015.
[21]A. Zaheer, D. Kacprzak and G. A. Covic, “A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 283-290, 2012.
[22]F. Y. Lin and G. A. Covic, “Numerical modelling of IPT pad combinations,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3103-3110, 2015.
[23]F. Wen, Q. Li, R. Li, L. Liu and T. Wu, “Harmonic and Magnetic Leakage from Wireless Charging System for Electric Vehicles,” 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), pp. 4117-4121, 2019.
[24]S. Hasegawa and H. Iwasaki, “Oval double spiral coil for high efficiency wireless power transmission,” 2017 11th European Conference on Antennas and Propagation (EUCAP), pp. 496-499, 2017.
[25]S. Hasegawa and H. Iwasaki, “Oval double spiral coil for high wireless power transmission efficiency,” 2015 International Symposium on Antennas and Propagation (ISAP), pp. 1-3, 2015.

電子全文 電子全文(網際網路公開日期:20270113)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top