跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉育齊
研究生(外文):LIU, YU-CHI
論文名稱:應用於工具機主軸精度檢測儀之無線電能傳輸供電系統開發
論文名稱(外文):Development of Wireless Power Supply System for Machine Tools Spindle Precision Tester
指導教授:陳建璋陳建璋引用關係
指導教授(外文):CHEN, CHIEN-CHANG
口試委員:覺文郁沈金鐘陳建璋
口試委員(外文):JYWE, WEN-YUHSHEN, JING-CHUNGCHEN, CHIEN-CHANG
口試日期:2022-01-06
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:62
中文關鍵詞:主軸精度檢測儀取電線圈無線充電
外文關鍵詞:CNC machine tool optical spindle precision testerpick-up coilwireless charging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究對應用於CNC工具機之光學式主軸精度檢測儀的電源供電系統提出一項解決方法,過去光學式主軸精度檢測儀的電源系統為鋰電池,當需要長時間量測工具機主軸數據並同時校正工具機主軸時,若使用鋰電池為電源供電系統可能會有斷電的風險且造成校正錯誤,而使用無線供電系統具備以下幾項優點,例如:產品會有更好的耐用性、防塵、防水、便攜性、減少更換電池的成本等優點。
因此本文所開發的無線電能傳輸系統依照系統架構可分為數位控制電路、閘極驅動電路、全橋換流器電路、電磁場發射線圈、取電線圈、橋式整流濾波電路、降壓式供電電路與光學式主軸精度檢測儀,首先透過數位控制電路MSP430G2553作為電能傳輸系統的控制系統,因其具備了低成本、較不受雜訊干擾與可程式控制的特性,所以本文可依實驗需求設定數位控制電路的參數並達到預期的效果,有鑒於此本文將使用MSP430G2553所提供的兩組不同相頻率為82 kHz、工作週期為 40 %、死區時間為10%的PWM作為控制訊號,並在數位控制電路後級端設計一個閘極驅動電路,使數位控制訊號可經由閘極驅動電路放大至12-15 V將MOFET開關導通,同時達到數位訊號與類比訊號隔離的效果,並使用全橋換流器的諧振結構將電能透過安培定律將電磁場藉由發射線圈傳送給取電線圈,且透過法拉第定律將感應磁場能量轉換為電流。
為了將電能有效的從發射線圈傳輸至取電線圈,基於光學式主軸精度檢測儀尺寸設計一款符合機構限制及能夠有效傳輸電能的發射線圈與取電線圈並於有限元素分析軟體內進行純線圈的磁場模擬,將發射線圈與取電線圈從空氣間隙10 mm每間隔1 mm進行一次模擬並延續至18 mm,除了線圈的磁場模擬本文也透過電路模擬軟體模擬電路設計的可行性,其中包含了閘極驅動電路、全橋換流器電路、橋式整流濾波電路與降壓式供電電路,從模擬中篩選出最適合的元件,使線圈設計與電路設計能符合本文的需求。
當完成了電路架構的設計,取電線圈上的感應電勢即可透過橋式整流濾波電路轉換為直流電,為了符合光學式主軸精度檢測儀的電壓及電流規格,本文在將直流電輸出給光學式主軸精度檢測儀前會先藉由降壓式供電電路降壓成符合光學式主軸精度檢測儀所需的電壓及電流規格,所以本文選用TPS5410集成式降壓IC作為降壓式供電電路的核心並結合電阻、電容、電感,成功將由橋式整流濾波電路輸出的電壓及電流轉分別轉換為5 V、1 A達到光學式主軸精度檢測儀的供電需求。 
除了線圈磁場的模擬,本文也進行了發射線圈與取電線圈電壓電流有效值量測實驗,將發射線圈與取電線圈從空氣間隙10 mm每間隔1 mm進行一次電壓電流的有效值量測並延續18 mm,經由此實驗結果分析無線電能傳輸供電系統適合運作的空氣間隙。綜合上述實驗及模擬分析得知本系統所設計的無線供電系統在10 mm至16 mm的空氣間隙皆可以使光學式主軸精度檢測儀啟動並且與電腦軟體連接進行靜態檢測與動態檢測,而這段距離正符合目前CNC工具機光學式主軸精度檢測儀設計無線電能傳輸機構模組所需的機構限制,因此可以得知本研究所設計無線電能傳輸符合工業應用,並且可以達到空氣間隙為10-16 mm的無線電能傳輸。
This study proposes a solution to the power supply system of optical spindle precision tester for CNC machine tools. In the past, a lithium battery was used as the power supply system for optical spindle precision testers. However, when it is necessary to measure the spindle data of machine tools for a long time and to correct the spindle of machine tools simultaneously, using a lithium battery as the power supply system may lead to the risk of power failure and correction errors. In contrast, the wireless power supply system has the following advantages: better durability, dustproof, waterproof, portability, and reduction in battery replacement cost.
Therefore, according to the system architecture, the wireless power transmission system developed in this paper can be divided into a digital control circuit, gate drive circuit, full-bridge inverter circuit, electromagnetic field transmitting coil, pick-up coil, full-bridge rectifier circuit, step-down power supply circuit, and optical spindle precision tester. First, the digital control circuit MSP430G2553 is used as the control system of the power transmission system because it has the characteristics of low cost, less noise interference, and programmable control. Therefore, this paper can set the parameters of a digital control circuit according to the experimental requirements, and the expected results can be achieved. For this purpose, in this paper, two different groups of PWM with phase frequency of 82 kHz, a duty cycle of 40%, and dead time of 10% provided by MSP430G2553 are used as control signals. Furthermore, a gate drive circuit is designed at the back end of the digital control circuit so that the digital control signal can be amplified to 12-15 V through the gate drive circuit to turn on the MOFET switch.
At the same time, the digital signal is isolated from the analog signal. Then, the resonant structure of the full-bridge inverter is used to transmit the electric energy according to ampere’s law to the electromagnetic field through the transmitting coil to the pick-up coil. According to Faraday's law, pick-up coil will induce magnetic field energy is converted into current.
In order to effectively transmit electric energy from transmitting coil to pick-up coil, transmitting coils and pick-up coils that meet the mechanism limitation and can effectively transmit electric energy are designed according to the size of optical spindle precision tester, and the magnetic field simulation of the pure coil is carried out in the finite element analysis software. The 10 mm air gap between the transmitting and pick-up coil is simulated once every 1 mm and lasts to 18 mm. In addition to the magnetic field simulation of the coil, this paper also simulates the circuit design feasibility through the circuit simulation software, which includes the gate drive circuit, full-bridge inverter circuit, full-bridge rectifier circuit, and step-down power supply circuit. The most suitable elements and electrical parameters are selected from the simulation so that the coil design and circuit design can meet the requirements of this paper.
After the completion of circuit architecture design, the induced potential on the pick-up coil can be converted into direct current through the full-bridge rectifier circuit. In order to meet the voltage and current specifications of the optical spindle precision tester, in this paper, the direct current is stepped down to meet the voltage and current specifications through the step-down power supply circuit before outputting it to the optical spindle precision tester. Therefore, in this paper, the TPS5410 integrated step-down IC is selected as the core of the step-down power supply circuit, and combined with resistors, capacitors, and inductors, the voltage and current output by full-bridge rectifier circuit are successfully converted into 5 V and 1 A respectively, so as to meet the power supply requirements of optical spindle precision tester. 
In addition to the simulation of coil magnetic field, in this paper, measure voltage and current effective value experiments for transmitting coil and pick-up coil are carried out. The measurement experiments of the transmitting coil and the power-taking coil was measured at an interval of 1 mm from the air gap of 10 mm and continued for 18 mm. Based on the above experiments and simulation analysis, it is known that the wireless power supply system designed by this system can start the optical spindle precision tester at air gap of 10 mm to 16 mm and connect with computer software for static detection and dynamic detection. And such air gap is just in line with the mechanism limit required by the current CNC machine tool optical spindle precision tester to design the wireless power transmission mechanism module. Therefore, it can be learned that the wireless power transmission designed in this study is suitable for industrial applications, and the wireless power transmission with an air gap of 10-16 mm can be achieved.
摘要.........i
Abstract.........iii
誌謝.........vi
目錄.........vii
表目錄.........ix
圖目錄.........x
符號說明.........xii
第一章 緒論.........1
1.1 研究目的.........1
1.2 研究背景.........2
1.3 國內外文獻回顧.........3
1.4 論文架構.........4
第二章 無線電能傳輸之電磁感應原理分析.........5
2.1 前言.........5
2.2 電磁感應之耦合原理.........5
2.2.1 安培定律.........5
2.2.2 法拉第定律.........6
2.2.3 自感與互感.........7
2.2.4 集膚效應.........9
2.3 電磁感應類型介紹.........10
2.3.1 電感耦合(Inductive coupling).........11
2.3.2 磁共振耦合(Magnetic resonant coupling).........12
2.3.3 電磁輻射(EM radiation).........13
2.4 電磁感應無線電能傳輸方法選用.........13
第三章 系統電路設計與模擬分析.........14
3.1 無線電能傳輸系統整體電路架構說明.........14
3.1.1 數位控制電路(Digital control circuit).........15
3.1.2 閘極驅動電路(Gate driver circuit).........16
3.1.3 全橋換流器電路(Full-Bridge Inverter circuit).........17
3.1.4 橋式整流濾波電路(Rectifier circuit).........26
3.1.5 降壓式供電電路(Step-down circuit).........27
3.1.6 光學式主軸精度檢測儀(Optical spindle precision tester).........28
3.2 無線電能傳輸系統線圈模擬分析.........29
3.3 無線電能傳輸系統整體電路模擬分析.........38
3.3.1 閘極驅動電路模擬.........38
3.3.2 全橋換流器電路模擬.........39
3.3.3 橋式整流濾波電路模擬.........41
3.3.4 降壓式供電電路.........43
第四章 實驗結果與分析.........44
4.1 硬體電路實作.........44
4.2 發射線圈電感量測.........45
4.3 電路波型量測.........48
4.3.1 數位控制訊號波型量測.........48
4.3.2 閘極驅動電路輸出波型量測.........48
4.3.3 發射線圈電壓電流波型量測.........50
4.3.4 發射線圈與取電線圈的純線圈電壓電流有效值量測.........51
4.3.5 發射線圈與取電線圈接收效率計算.........52
4.4 無線電能傳輸系統供電8小時溫度量測.........54
第五章 結論與未來展望.........55
5.1 結論.........55
5.2 未來展望.........56
參考文獻.........57
Extended Abstract.........60


[1]X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han,“Wireless charging technologies: Fundamentals standards and network applications,”IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1413-1452, 2nd Quart. 2016.
[2]A. Kurs et al.,“Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, Jun. 2007.
[3]蘇啟誠,2020,應用於燒結刀桿之電磁均勻感應加熱系統開發,國立虎尾科技大學自動化工程研究所碩士論文。
[4]Y. Chen, C. Chen, C. Tai, Y. Du and Y. Liu,“Modeling analysis and estimation of thyroid gland tissue temperature distribution for electromagnetic induction ablation using thermotherapy needle,”2017 IEEE International Magnetics Conference (INTERMAG), pp. 1-1, 2017.
[5]W. Wang, C. Tai,“Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller,”Rev. Sci. Instrum., vol. 88, article 074702, Jul. 2017.
[6]C.-C. Chen, C.-C. Tai, S.-J. Huang, Y.-H. Chen and C.-H. Lin,“Thermotherapy induction heating apparatus with new magnetic-wrapped coil design,”IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2592-2600, May 2014.
[7]D. Kim, D. Jeong, J. Kim, H. Kim, J. Kim, S.-M. Park, et al.,“Design and implementation of a wireless charging-based cardiac monitoring system focused on temperature reduction and robust power transfer efficiency,”Energies, vol. 13, no. 4, pp. 1008, Feb. 2020.
[8]S. Jeong, Y. J. Jang, D. Kum and M. S. Lee,“Charging automation for electric vehicles: Is a smaller battery good for the wireless charging electric vehicles?,”IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 486-497, Jan. 2019.
[9]C. Zheng et al.,“High-efficiency contactless power transfer system for electric vehicle battery charging application,”IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 65-74, Mar. 2015.
[10]J. J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho and C. T. Rim,“Narrow-width inductive power transfer system for online electrical vehicles,”IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666-3679, Dec. 2011.
[11]J. Sallan, J. L. Villa, A. Llombart and J. Fco. Sanz,“Optimal design of ICPT systems applied to electric vehicle battery charge,”IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140-2149, Jun. 2009.
[12]H. Zeng, Z. Liu, Y. Hou, T. Hei and B. Zhou,“Optimization of magnetic core structure for wireless charging coupler,”IEEE Trans. Magn., vol. 53, no. 6, Jun. 2017. 
[13]B. Choi, J. Nho, H. Cha, T. Ahn and S. Choi,“Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,”IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
[14]B. Choi, H. Cha, J. Noh and S. Park,“A new contactless battery charger for portable telecommunication/computing electronics,”ICCE. International Conference on Consumer Electronics, pp. 58-59, 2001.
[15]K. Ron-Chi, P. Riehl, A. Satyamoorthy, W. Plumb, P. Tustin and J. Lin,“A 3D resonant wireless charger for a wearable device and a mobile phone,”Proc. IEEE Wireless Power Transfer Conf., pp. 1-3, 2015.
[16]B. Zhou, Z. Z. Liu, H. X. Chen, H. Zeng and T. Hei,“A new metal detection method based on balanced coil for mobile phone wireless charging system,”Proc. Int. Conf. New Energy Future Energy Syst., pp. 1-9, Aug. 2016.
[17]S. Y. Hui, "Planar wireless charging technology for portable electronic products and Qi", Proc. IEEE, vol. 101, no. 6, pp. 1290-1301, Jun. 2013.
[18]陳嘉緯,2008,非接觸式感應充電杯之研製,國立成功大學電機工程研究所碩士論文。
[19]Y. Gao, C. Duan, A. A. Oliveira, A. Ginart, K. B. Farley and Z. T. H. Tse,“3-D coil positioning based on magnetic sensing for wireless EV charging,”IEEE Trans. Transport. Electrific., vol. 3, no. 3, pp. 578-588, Sep. 2017.
[20]P. Machura and Q. Li,“A critical review on wireless charging for electric vehicles,”Renew. Sustain. Energy Rev., vol. 104, pp. 209-234, Apr. 2019.
[21]X. Zhang, Z. Yuan, Q. Yang, Y. Li, J. Zhu and Y. Li,“Coil design and efficiency analysis for dynamic wireless charging system for electric vehicles,”IEEE Trans. Magn., vol. 52, no. 7, pp. 1-4, Jul. 2016.
[22]T. M. Fisher, K. B. Farley, Y. Gao, H. Bai and Z. T. H. Tse,“Electric vehicle wireless charging technology: A state-of-the-art review of magnetic coupling systems,”Wireless Power Transf., vol. 1, no. 2, pp. 87-96, 2014.
[23]S. Li and C. C. Mi,“Wireless power transfer for electric vehicle applications,”IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4-17, Mar. 2015.
[24]S. Raabe, J. T. Boys and G. A. Covic, “A high power coaxial inductive power transfer pickup,”Proc. IEEE Power Electron. Spec. Conf., Jun. 2008.
[25]D. Kacprzak, G. A. Covic and J. T. Boys,“An improved magnetic design for inductively coupled power transfer system pickups,”2005 International Power Engineering Conference, vol. 2, pp. 1133-1136, 2005.
[26]S. Huang, S. Dai, J. Su and T. Lee,“Design of a contactless power supply system with dual output capability for AGV applications,”Proc. IEEE Global Conf. Consum. Electron., pp. 1-3, 2017. 
[27]S.-J. Huang, T.-S. Lee, W.-H. Li and R.-Y. Chen,“Modular on-road AGV wireless charging systems via interoperable power adjustment,”IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 5918-5928, Aug. 2019.
[28]M. Miyazaki, S. Abe, Y. Suzuki, N. Sakai, T. Ohira and M. Sugino,“Sandwiched parallel plate capacitive coupler for wireless power transfer tolerant of electrode displacement,” IEEE International Conference Microwave Intelligent Mobility, pp. 29-32, Mar. 2017.
[29]張笠筠,2015,植入式骨釘之非接觸電刺激裝置,國立成功大學電機工程研究所碩士論文。
[30]MSP430G2553 Data sheet, Texas Instruments Inc., 2013.
[31]W. Jywe, T.-H. Hsu, and C.-H Liu,“Non-bar, an optical calibration system for five-axis CNC machine tools,”International Journal of Machine Tools and Manufacture, vol. 59, pp. 16-23, Aug. 2012.
[32]AC/DC Module User’s Guide, COMSOL AB, Stockholm, Sweden, 2019.

電子全文 電子全文(網際網路公開日期:20270113)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top