跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡鈞翊
研究生(外文):JIAN, JUN-YI
論文名稱:攀牆四足機器人之步態設計
論文名稱(外文):Gait Design of a Wall-Climbing Quadruped Robot
指導教授:蔡明標蔡明標引用關係
指導教授(外文):TASI, MING-PIAO
口試委員:蔡明標韓強生季永炤
口試委員(外文):TASI, MING-PIAOHAN, JOHN-SONJIH, YEUNG-JAW
口試日期:2022-07-27
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:53
中文關鍵詞:四足攀牆機器人步態穩定度
外文關鍵詞:Quadruped wall climbing robotGaitStability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
本文在於說明一種自主攀牆機器人之發展與設計,此種機器人之設計可藉由工作場
地或需求決定適當的機構達到對應功能。隨著科技日益進步使得各式各樣新一代機器人
也因應解決各種高危險及高風險的問題而產生,目前足型機器人多以陸地環境為主,對
於其他環境步態的設計研究非常稀少,而本研究主要用於解決需要攀牆工作及對複雜牆
面洗刷的人員而設計之四足機器人,為了使四足機器人應付複雜牆面而特別設計了腰關
節,藉由此機器人設計出特殊步態。
本研究四足攀牆機器人主探討兩個部分,第一部分主要探討機器人動作步態及各足
吸盤動作之間的運動設計,藉由此研究探討吸盤動作與運動步態設計之間的協調性,達
到吸附牆面的目的,而第二部分主要探討由 SOLIDWORKS 及 LabVIEW 軟體設計及模
擬了解實體機構設計上是否有差異。此研究主要探討以 SOLIDWORKS 為主要機體設計
軟體並以此軟體探討機體步態設計,最後再以 LabVIEW 軟體計算反運動學公式,將算
式得出的足部關節順序與位置套用至 AI 伺服馬達,使馬達的運動方式與模擬結果印証
比較,藉此達到完整的步態設計。最後機體以 Microchip 微控器為核心,將 LabVIEW 軟
體計算公式得出的位址建成運動位址表,以表的方式進行運動步態實驗,藉此研究出完
整的步態設計。
本研究經過反覆實驗後,藉由實驗數據控制其參數使機器人產生不同步態動作,接
著以不同步幅測試步態動作之有效性,利用此實驗數據規劃運動步態,並分析機體行走
之穩定性及步態規劃的特性。

This paper is to explain the development and design of an autonomous wall-climbing robot, which can be designed to achieve the corresponding function by deciding the appropriate mechanism for the workplace or demand. With the increasing advancement of technology, various kinds of new generation robots were created to solve various high risk and high danger problems, currently the foot type robots were mainly for the land environment, and the research on the design of other environmental gait was very rare. The lumbar joints were designed to enable the robot to cope with complex walls and to create a special gait.
This research mainly discusses two parts of the four-legged wall climbing robot. The first part mainly discusses the robot action gait and the motion design between the suction cup movements of each foot. To achieve the purpose of adsorbing the wall, the second part mainly discusses whether there were differences in the design of the entity mechanism by SOLIDWORKS and LabVIEW software design and simulation. This research mainly discusses the use of SOLIDWORKS as the main body design software and discusses the body gait design with this software. Finally, the LabVIEW software was used to calculate the inverse kinematics formula, and the sequence and position of the foot joints obtained by the formula are applied to the AI servo motor. The motor's motion pattern is compared with the simulation results, thereby achieving a complete gait design. Finally, the body takes Microchip microcontroller as the core, and the address obtained by the LabVIEW software calculation formula is built into a motion address table, and the motion gait experiment is carried out in the form of a table, so as to study a complete gait design.
After repeated experiments in this study, the parameters of the robot were controlled by the experimental data to make the robot generate asynchronous motion, and then the effectiveness of the gait motion was tested with different synchronic amplitudes. This experiment was used to plan a gait with excellent stability as the basis for motion, and analyze the stability of the body walking and the characteristics of gait designed.

摘要....................................i
Abstract................................ii
誌謝....................................iv
目錄....................................v
表目錄..................................vii
圖目錄..................................viii
第一章 緒論............................1
1.1 研究動機與背景...................1
1.2 研究目的與方法...................1
1.3 相關研究之回顧...................2
1.4 論文架構........................4
第二章 攀牆四足機器人運動機構之設計......5
2.1 攀牆四足機器人運動機構設計........5
2.1.1 伺服馬達........................7
2.1.2 主體運動機構設計.................8
2.1.3 腰部運動機構設計.................9
2.1.4 足部機構設計.....................10
2.2 吸盤控制機構設計.................12
2.2.1 吸盤實驗及應用...................13
2.2.2 吸盤機構........................15
2.3 本章結論........................15
第三章 控制系統架構.....................16
3.1 控制系統硬體架構.................16
3.1.1 控制層..........................17
3.1.2 執行層..........................18
3.1.3 微控制器........................18
3.1.4 紅外線感測器....................19
3.1.5 慣性量測單元....................20
3.2 軟體系統架構....................21
3.3 本章節結論......................23
第四章 機器人運動步態分析及規劃.........24
4.1 機器人運動分析..................24
4.1.1 直行步態........................26
4.1.2 攀爬步態........................29
4.2 運動學模型分析..................30
4.3 運動規劃........................33
4.4 本章節結論......................34
第五章 實地測試控制與結果...............35
5.1 實驗方法........................35
5.2 直行步態之實驗...................35
5.3 彎曲動作步態之實測...............42
5.4 攀牆動作步態之實測...............45
第六章 結論............................47
參考文獻................................48
Abstract...............................49


[1] Schmidt, D. and K. Berns (2013). "Climbing robots for maintenance and inspections of vertical structures—A survey of design aspects and technologies." Robotics and Autonomous Systems 61(12): 1288-1305.

[2] Gao, F., J. Fan, L. Zhang, J. Jiang and S. He (2020). "Magnetic crawler climbing detection robot basing on metal magnetic memory testing technology." Robotics and Autonomous Systems 125: 103439.

[3] Xu, F., F. Meng, Q. Jiang and G. Peng (2020). "Grappling claws for a robot to climb rough wall surfaces: Mechanical design, grasping algorithm, and experiments." Robotics and Autonomous Systems 128: 103501.

[4] Liu, Y., B. Lim, J. W. Lee, J. Park, T. Kim and T. Seo (2020). "Steerable dry-adhesive linkage-type wall-climbing robot." Mechanism and Machine Theory 153: 103987.

[5] Koh, K. H., M. Sreekumar and S. G. Ponnambalam (2016). "Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot." Mechatronics 35: 122-135.

[6] VertiGo – A Wall-Climbing Robot including Ground-Wall Transition
https://la.disneyresearch.com/publication/vertigo/

[7] Wang, W., K. Wang, G.-H. Zong and D.-Z. Li (2010). "Principle and experiment of vibrating suction method for wall-climbing robot." Vacuum 85(1): 107-112.

[8] Chen, I. M. and S. Yeo (2003). "Locomotion of a 2D Walking-Climbing Robot Using Closed-Loop Mechanism: From Gait Generation to Navigation." The International Journal of Robotics Research 22: 21.

[9] Loc, V.-G., S.-g. Roh, I. M. Koo, D. T. Tran, H. M. Kim, H. Moon and H. R. Choi (2010). "Sensing and gait planning of quadruped walking and climbing robot for traversing in complex environment." Robotics and Autonomous Systems 58(5): 666-675.

[10] Elkmann, N., D. Kunst, T. Krueger, M. Lucke, T. Böhme, T. Felsch and T. Stürze (2005). SIRIUSc — Facade Cleaning Robot for a High-Rise Building in Munich, Germany. Climbing and Walking Robots, Berlin, Heidelberg, Springer Berlin Heidelberg.

[11] Ge, D., T. Matsuno, Y. Sun, C. Ren, Y. Tang and S. Ma (2015). "Quantitative study on the attachment and detachment of a passive suction cup." Vacuum 116: 13-20.

[12] Tun, T. T., M. R. Elara, M. Kalimuthu and A. Vengadesh (2018). "Glass facade cleaning robot with passive suction cups and self-locking trapezoidal lead screw drive." Automation in Construction 96: 180-188.

[13] Liu, J., K. Tanaka, L. M. Bao and I. Yamaura (2006). "Analytical modelling of suction cups used for window-cleaning robots." Vacuum 80(6): 593-598.

[14] 彭鈞愷. (2010). 四足機器人參數式波浪步態控制之研究. 國立虎尾科技大學, (碩士), 雲林縣.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top