跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭瑞和
研究生(外文):ZHENG, RUI-HE
論文名稱:以摻鈰釔鋁石榴石螢光陶瓷探討鉻鉬鋼球化爐溫度與氣氛均勻性
論文名稱(外文):Study of Temperature and Atmosphere Uniformity of Cr-Mo Steel Spheroidizing Furnace Using YAG:Ce Phosphor Ceramics
指導教授:粘永堂
指導教授(外文):NIEN, YUNG-TANG
口試委員:吳鉉忠呂啟榮
口試委員(外文):WU, HSUAN-CHUNGLU, CHI-JUNG
口試日期:2022-07-01
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:78
中文關鍵詞:釔鋁石榴石螢光陶瓷雷射燒結鉻鉬合金鋼球化
外文關鍵詞:yttrium aluminum garnetphosphor ceramicslaser sinterCr-Mo Steelspheroidization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用摻鈰釔鋁石榴石(YAG:Ce)螢光陶瓷的特性,探討鉻鉬鋼在鐘罩式球化爐退火時之溫度與氣氛的均勻性,並以管形爐驗證所得結果,由x光繞射儀(x-ray diffractometer, XRD)結果得知,在氮氣流量300 cc/min或是100 cc/min下退火5小時後不會有中間相產生,以流量300 cc/min退火後,在管形爐最高溫位置(780 oC),雷射燒結法及固態反應法YAG:Ce之(420)繞射峰分別往高角度偏移1.2%及0.05%,而最低溫度(730 oC)則是分別往高角度偏移0.06%及往低角度偏移0.06%,往高角度偏移是因為Si4+取代了Al3+,往低角度偏移則是因為N3-取代了O2-,繞射峰偏移量都會隨溫度降低減少。由光學量測可以得知,上述兩種樣品經退火後,光致發光(photoluminescence, PL)強度會有所提升,但提升量會隨著退火溫度下降至730 oC時而降低至僅提升0.2%,在流量300 cc/min下退火的樣品,雷射燒結法及固態反應法經780 oC退火後分別提升11.8%及5.6%,但730 oC則只有0%及2.4%,因為退火溫度越高Ce4+還原成Ce3+的比例會越高 ,在流量下降為100 cc/min後,對PL上升幅度並不會有很大的影響。分析PL波長位置可以發現,較大氮氣流量(300 cc/min)且最高溫樣品(780 oC)發生0.2-0.3%的紅移,最低溫樣品(730 oC)則會產生0.2-0.4%的藍移,當氮氣流量下降至100 cc/min雷射燒結法樣品會因為殘留前驅物中的矽取代YAG的鋁而產生晶場效應使波長往短波長移動。
由管形爐鉻鉬鋼結果可以得知,在高流量300 cc/min三種溫度下均可以完成球化,在溫度下降至730 oC時,球化率會明顯降低,從原本780 oC退火的80%下降至50%,當氣體流量降低至100 cc/min,會因為爐內熱對流降低,導致溫度均勻性較差,使球化率在755 oC就開始明顯降低至30%。
  由鐘罩式球化爐進行退火後,發現YAG:Ce晶格常數變化是氮取代氧與矽取代鋁競爭的結果,球化爐下方氮濃度高,導致更多的氮取代氧,使YAG的(420)繞射峰往低角度偏移,鉻鉬合金鋼脫碳層低於上方樣品45%,PL波長藍移;球化爐上方溫度較高,會使YAG中矽取代鋁(晶格常數減少)大於氮取代氧(晶格常數增加),使YAG整體(420)繞射峰是往高角度偏移,鉻鉬合金鋼球化率高於下方3%,PL波長則是紅移。十次球化爐測試中,有六爐中不同位置的YAG:Ce,因為溫度的不均勻,上中下位置分別出現紅移或藍移,而有三爐的上方樣品的晶格常數並無增加,說明了氮原子取代不足,球化爐氣氛的不均勻,此溫差依然可以使鉻鉬鋼成功球化,但會影響其球化率,而氮氣濃度的不足則會增加脫碳層的厚度,十次測試中,球化率均達70%以上,硬度均從原本的HV 340-HV 260下降至HV 140-HV 180。

This study applied traditional solid-state reaction (SSR) and novel laser sintering methods to prepare cerium-doped yttrium aluminum garnet (YAG:Ce) phosphor ceramics to discussion temperature and atmosphere on bell furnace for chromium-molybdenum steel. According to the x-ray diffraction results, all specimens contained only YAG phases without obvious impurity phases. The (420) peak of YAG shifted 0.02o to lower angles because of the of N3- (1.46 Å) substitution for O2- (1.38 Å), the Si4+ (0.26 Å) substitution for Al3+ (0.39 Å) make the (420) peak of YAG shifted 0.08o to lower angles when the temperature too hight .The photoluminescence (PL) were found to be higher in annealing YAG than those by non-annealing YAG .Compared to non-annealing YAG:Ce, the promote of PL intensity were around 11.8% and 5.6% for laser and SSR ones, respectively because reduction of Ce4+ to Ce3+ in annealing process. Based on the results obtained in the above, the top site for the bell furnace the high temperature make the Si4+ substitution for Al3+ so the (420) peak of YAG shifted to lower angles, create the highest spheroidization rate in the furnace, on the contrary bottom lower temperature make the lower spheroidization rate.
摘要......i
Abstract......iv
誌謝......v
目錄......vi
表目錄......ix
圖目錄......x
第一章 緒論......1
1.1 前言......1
1.2 研究動機與目標......1
第二章 理論基礎與文獻回顧......1
2.1 釔鋁石榴石簡介......1
2.1.1 釔鋁石榴石的晶體結構......1
2.1.2 摻鈰釔鋁石榴石的製備......2
2.1.3 螢光材料的發光機制......2
2.2 影響螢光材料發光特性的因素......3
2.2.1 晶場效應(Crystal field effect)......3
2.2.2 電子雲重排效應(Nephelauxetic effect)......3
2.2.3 濃度淬滅(Concentration quenching effect)......4
2.2.4 溫度淬滅 ......5
2.2.5 長餘暉......5
2.2.6 量子效率......5
2.3 釔鋁石榴石後處理的應用......6
2.3.1 釔鋁石榴石在氮氣下退火......6
2.3.2 釔鋁石榴石摻雜Si3N4......12
2.4 雷射簡介......15
2.5 鉻鉬合金鋼......20
2.6 儀器原理......22
2.6.1 X光繞射儀 (X-ray diffractometer, XRD)......22
2.6.2 掃描式電子顯微鏡(scanning electron microscopy, SEM)......23
2.6.3 X光能量色散光譜(energy-dispersive x-ray spectroscopy, EDS)......24
2.6.4 螢光分光光度計 (fluorescence spectrophotometer)......25
2.6.5 穿透式電子顯微鏡 (transmission electron microscope, TEM)......26
2.6.6 光學顯微鏡 (optical microscopy, OM)......26
2.6.7 X光光電子能譜 (x-ray photoelectron spectroscopy, XPS)......27
2.6.8 聚焦離子束 (focused ion beam, FIB)......27
2.6.9 維氏硬度 (Vickers hardness test)......28
第三章 實驗方法與步驟......29
3.1 實驗藥品......29
3.2 量測儀器與分析設備......29
3.2.1 CO2雷射雕刻機......29
3.2.2 X光繞射儀(X-ray diffractometer, XRD)......30
3.2.3 光學數位顯微鏡(opto-digital microscopy, OM)......30
3.2.4 熱風循環烘箱(forced convection oven)......30
3.2.5 球磨機(ball milling machine)......31
3.2.6 研磨拋光機(grinding and polishing machine)......31
3.2.7 慢速切割機(low speed cutter)......31
3.2.8 加熱電磁攪拌機......31
3.2.9 光致發光光譜儀(photoluminescence, PL)......31
3.2.10 方形高溫爐(muffle furnace)......31
3.2.11 管形高溫爐(tube furnace)......31
3.2.12 鐘罩式球化爐(bell furnace)......32
3.2.13 X光光電子能譜(X-ray photoelectron spectroscopy, XPS)......32
3.2.14 維式硬度試驗機......32
3.2.15 聚焦離子束顯微鏡(focused ion beam, FIB)......32
3.2.16 穿透式電子顯微鏡(transmission electron microscope, TEM)......32
3.3 實驗流程......32
3.3.1 管形高溫爐對YAG:Ce及SCM440進行退火......33
3.3.2 鐘罩式球化爐退火......37
第四章 實驗結果與討論......39
4.1 高流量氮氣退火之摻鈰釔鋁石榴石與鉻鉬合金鋼之變化......39
4.1.1 高氮氣流量退火摻鈰釔鋁石榴石之晶格常數變化......39
4.1.2 高氮氣流量退火摻鈰釔鋁石榴石之光學特性變化......41
4.1.3 高氮氣流量退火鉻鉬合金鋼之微結構及硬度分析......45
4.2 低流量氮氣退火之摻鈰釔鋁石榴石與鉻鉬鋼之變化......47
4.2.1 低氮氣流量退火摻鈰釔鋁石榴石之晶格常數變化......47
4.2.2 低氮氣流量退火摻鈰釔鋁石榴石之光學特性變化......49
4.2.3 低氮氣流量退火鉻鉬合金鋼之微結構及硬度分析......52
4.3 於鐘罩式球化爐不同位置進行退火......55
4.3.1 釔鋁石榴石退火前後微結構及成分分析......55
4.3.2 鐘罩式球化爐溫度與氣氛分析......57
4.3.3 釔鋁石榴石退火前後表面元素分析......59
4.3.4 鉻鉬鋼退火後硬度分析......61
4.3.5 鉻鉬鋼退火後微結構分析......61
第五章 結論......63
參考文獻......64
Extended Abstract......68

[1]K. Asami et al., Crystal structure analysis and evidence of mixed anion coordination at the Ce3+ site in Y3Al2(Al,Si)3(O,N)12 oxynitride garnet phosphor, Journal of Materials Chemistry C, 2019, 7, 1330-1336.
[2]Y. Kim et al., Monodispersed spherical YAG:Ce3+ phosphor particles by one-pot synthesis, Journal of Alloys and Compounds, 2017, 693, 40-47.
[3]T. Ghrib et al., Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method, Thermochimica Acta, 2017, 654, 35–39.
[4]M. Huang et al. Rapid, convenient and low-energy preparation of spherical rare earth doped YAG phosphors by a laser sintering method, Journal of Materials Chemistry C, 2019, 7, 13070-13079.
[5]Y.C. Chen et al., Microstructure and photoluminescence properties of laser sintered YAG:Ce phosphor ceramics, Journal of the European Ceramic Society, 2017, 37, 223–227.
[6]螢光,維基百科
[7]國立交通大學機構典藏,第二章發光材料與發光基本原理,網址:https://ir.nctu.edu.tw/bitstream/11536/38025/6/550606.pdf.
[8]胡竣傑,室溫濺鍍氧化鋅薄膜之發光特性研究,2005
[9]M. Jia et al., Improved scintillating properties in Ce:YAG derived silica fiber with the reduction from Ce4+ to Ce3+ ions, Journal of Luminescence, 2020, 221, 117063.
[10]A. Suchocki et al., Nephelauxetic effect in luminescence of Cr3+-doped lithium niobate and garnets, Journal of Luminescence, 2003, 102, 571–574.
[11]陳登銘,無機螢光體材料化學。
[12]J.C.A. Santos et al., Effect of the Ce3+ concentration on laser-sintered YAG ceramics for white LEDs applications, Journal of the European Ceramic Society, 2020, 40, 3673–3678.
[13]S. Ye et al., Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Materials Science and Engineering, 2010, 71, 1–34.
[14]B. Wen et al., Effect of grain size on the luminescent properties of Ce3+ doped Y3Al5O12 ceramic phosphor plates, Ceramics International, 2020, 46, 10452–10456.
[15]W. Jiang et al., Static recrystallization of transparent polycrystalline yttrium aluminum garnet (YAG), Scripta Materialia, 2019, 173, 37–40.
[16]K. Asami et al., Redshift and thermal quenching of Ce3+ emission in (Gd, Y)3(Al, Si)5(O, N)12 oxynitride garnet phosphors, Optical Materials,2019, 87, 117–121.
[17]D. Valiev et al., The effect of Ce3+ concentration and heat treatment on the luminescence efficiency of YAG phosphor, Journal of Physics and Chemistry of Solids, 2018, 116, 1-6.
[18]T. Zhou et al., Annealing induced discoloration of transparent YAG ceramics using divalent additives in solid-state reaction sintering, Journal of the European Ceramic Society, 2017, 37, 4123–4128.
[19]A. Boukerika et al., Effect of different annealing atmospheres on the structural and luminescence properties of Ce3+-doped YAG phosphors synthesized by sol–gel method, Optik, 2016, 127, 5235–5239.
[20]F. Zhang et al., Improvement of photoluminescence properties and thermal stability of Y2.9Ce0.1Al5-xSixO12 phosphors with Si3N4 addition, Journal of Alloys and Compounds, 2014, 615, 588–593.
[21]T. Han et al., Effects of annealing temperature on YAG:Ce synthesized by spray-drying method, Optik, 2013, 124, 3539–3541.
[22]R. Tomala et al., Comprehensive study of photoluminescence and cathodoluminescence of YAG:Eu3+ nano- and microceramics, Optical Materials, 2015, 50, 59–64.
[23]J.H. Lee et al., Effect of annealing on microstructure and luminescence characteristics in spark plasma sintered Ce3+-activated (Gd, Lu)3Al5O12 garnet ceramics, Journal of the European Ceramic Society, 2021, 41, 1586–1592.
[24]X. Li et al., Effect of air annealing on the optical properties and luminescence performance of Ce:YAG ceramics for light-emitting diodes at different Ce concentrations, Journal of the European Ceramic Society, 2021, 41, 4590–4597.
[25]B. Sun et al., Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs, J. Mater. Chem. C, 2019, 7, 4057-4065.
[26]J.J. Shyu et al., Improvement of photoluminescence intensity of Ce-doped Y3Al5O12 phosphor by Si3N4 addition, Materials Chemistry and Physics, 2017, 193, 339-347.
[27]X. Wang et al., Luminescent properties of yellowish orange Y3Al5−xSixO12−xNx:Ce phosphors and their applications in warm white light-emitting diodes, Journal of Alloys and Compounds, 2012, 519, 149– 155.
[28]M.S. Lizer et al., The effect of Al–O substitution for Si–N on the luminescence properties of YAG:Ce phosphor, Journal of the European Ceramic Society,2012, 32, 1383–1387.
[29]Q. Q. Zhu et al., A novel solid-state synthesis of long afterglow, Si–N co-doped Y3Al5O12:Ce3+ phosphor, Journal of Luminescence, 2016, 172, 270-274.
[30]L. Ning et al., First-principles study of Ce-doped Y3Al5O12 with Si–N incorporation: electronic structures and optical properties, Journal of Materials Chemistry C, 2016, 4, 5214-5221.
[31]蔡雨錡,二氧化碳雷射,科學Online。
[32]熊治民 等人,雷射應用的趨勢展望,雷射基層發展技術研討會,2020。
[33]Y.T. Nien et al., Microstructure, phase transformation and photoluminescence of YAG:Ce ceramics by CO2 laser sintering, Journal of Alloys and Compounds, 2019, 797, 110-116.
[34]R. Yuan et al., Rapid, convenient and low-energy preparation of spherical rare earth doped YAG phosphors by a laser sintering method, J. Mater. Chem. C, 2019, 7, 13070-13079.
[35]A.A. Morales et al., Fast sintering method of phosphor-in-glass for high-power LEDs, Journal of Luminescence, 2019, 214, 116546.
[36]Y.T. Nien et al., CO2 laser post-treatment of sol-gel-derived Y3Al5O12:Ce phosphor ceramic powders, Ceramics International, 2021, 47, 18550-18556.
[37]H. R. Abd et al., Ce-doped YAG single-crystals prepared by continuous wave (CW)–CO2 laser combustion technique with attractive characteristics and moderate white LED performance, Optics and Laser Technology, 2020, 132, 106506.
[38]H. R. Abd et al., Rapid synthesis of Ce3+:YAG via CO2 laser irradiation combustion method: Influence of Ce doping and thickness of phosphor ceramic on the performance of a white LED device, Journal of Solid State Chemistry, 2021, 294, 121866.
[39]中文百科知識,鉻鉬鋼,網址:https://www.easyatm.com.tw/wiki/%E9%89%BB%E9%89%AC%E9%8B%BC.
[40]M. Szala et al., Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening coefficient of 42CrMo4 Steel, Materials 2020, 13, 13092022.
[41]E. Karadeniz, Influence of different initial microstructure on the process of spheroidization in cold forging, Materials and Design, 2008, 29, 251–256.
[42]X. Duan et al., Temperature Dependence and Formation Mechanism of Surface Decarburization Behavior in 35CrMo Steel, Steel Research, 2019, 90, 1900188.
[43]C. C. Yang et al., The Inspection of Spheroidized Annealing on SCM435 Cold-Forging Quality Steel Wires with Protective Atmosphere, Materials Sciences and Applications, 2019, 10, 677-686.
[44]SERC, X-ray Powder Diffraction (XRD), Available: https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html.
[45]Nanoscience, Scanning electron microscopy. Available: https://www.nanoscience.com/products/scanning-electron-microscopes/.
[46]SERC, Energy dispersive x-ray spectroscopy, Available: https://serc.carleton.edu/research_education/geochemsheets/eds.html.
[47]Sobarwiki, Schematic of UV- visible spectrophotometer, Available: https://commons.wikimedia.org/wiki/File:Schematic_of_UV_visible_spectrophotometer.
[48]Microbe Notes, Transmission Electron Microscope (TEM)- Definition, Principle,Images, Available: https://microbenotes.com/
[49]維基百科,光學顯微鏡,網址:https://zh.m.wikipedia.org/zh-tw/光學顯微鏡。
[50]H. Facey et al., X-ray Photoelectron Spectroscopy (XPS), Available: https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Spectroscopy/X -ray_Photoelectron_Spectroscopy_(XPS).
[51]wiki, Focused ion beam, Available: https://en.wikipedia.org/wiki/Focused_ion_beam.
[52]wiki, Vickers hardness test, Available: https://en.wikipedia.org/wiki/Vickers_hardness_test.
[53]NIST X 光光電子能譜數據庫,網址:https://srdata.nist.gov/xps/
[54]J.A.P. Taborda et al., Correlation Between Optical, Morphological, and Compositional Properties of Aluminum Nitride Thin Films by Pulsed Laser Deposition, IEEE Sensors Journal, 2016, 16, 359-364.
[55]J. Chen et al., Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production, Green Chemistry, 2015, 17, 509–517.

電子全文 電子全文(網際網路公開日期:20270725)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top