跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭宇良
研究生(外文):SIAO, YU-LIANG
論文名稱:應用於酸性稀釋溶液導電度量測的IDT感測系統
論文名稱(外文):The IDT sensing system applied to measure the conductivity of diluted acid solution
指導教授:陳文瑞陳文瑞引用關係
指導教授(外文):CHEN, WEN-RAY
口試委員:黃建榮謝振榆
口試委員(外文):HUANG, CHIEN-JUNGSHIEH, JEN-YU
口試日期:2022-07-23
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:78
中文關鍵詞:指叉電極導電度微控制器
外文關鍵詞:IDTConductivityMicrocontroller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為將指叉電極感測器用於量測酸性稀釋溶液的導電度,並開發了一個基於ESP32微控制器的感測系統,其感測系統包含系統電源、波型產生器電路、相位振幅檢測電路、恆流源電路,使用1.6V、1KHz的正弦波輸入至IDT感測器中,將振幅與相位電壓值通過ESP32運算出當前振幅與相位,恆流源電路提供4-20mA輸出應用於工業感測器的標準電流值,IDT感測器設計後將圖案轉印至PCB板上,之後將其封裝並且使用電鍍製程,將鎳與金鍍於銅金屬上便完成IDT感測器製作,也通過PCB廠商使用ENIG-RoHS製程將設計完成的IDT感測器大量製造。
根據實驗的結果,使用不同的水(DI、RO、自來水)進行稀釋BOE和HCl,當BOE或HCl與水稀釋比例越多,其振幅將由小變大,並呈現指數關係,指出當濃度越稀時量測中的溶液導電度就越差,在輸入訊號與感測器上訊號的相位差變化大約從-65o變化至-10o,並利用振幅與相位值計算出阻抗變化。通過變化頻率實驗,其頻率越高時感測器獲得的振幅會越小,而當感測器指數越多時其阻抗將會越低。最後將感測器置於含氟的製程廢水中量測,顯示出製作的感測系統可以辨識出純水與通入NF3氣體的溶液差異。

In this study, an interdigitated electrode sensor was used to measure the conductivity of acid dilute solutions, and a sensing system based on ESP32 microcontroller was developed. The system includes the power supply, the waveform generator, phase amplitude detection, and constant current source circuit. The adopted input electronic signal was the sinusoidal wave with an amplitude of 1.6V and a fixed frequency of 1KHz, and the constant current source circuit provides 4 to 20mA output for the standard current value of the industrial sensor. After the IDT sensor is designed, the pattern is transferred to the PCB board, and then it is packaged and electroplated, and nickel and gold are plated on the copper metal to complete the IDT sensor fabrication. The designed IDT sensor is also manufactured by the PCB manufacturer using ENIG-RoHS process.
According to the results of the experiment, we use three kinds of water for HCl and BOE dilution. When the dilution ratio of BOE or HCl to water is more, its amplitude will change from small to large and show an exponential relationship. Indicates that when the concentration is more diluted, the conductivity of the solution in the measurement is worse. The phase different between the input signal and the signal on the sensor varies from about -65o to -10o, and the amplitude and phase value are used to calculate the impedance change. Then, the different frequency experiments. The higher the frequency, the smaller the amplitude the sensor will get, and the lower the impedance will be when the sensor finger number is more. Finally, the sensor is placed in the fluorine-containing process wastewater for measurement, which shows that the fabricated sensing system can identify the difference between RO water and the solution passed into NF3 gas.

摘要.............i
Abstract.............ii
誌謝.............iii
目錄.............iv
表目錄.............vi
圖目錄.............vii
第一章 緒論.............1
1.1 前言.............1
1.2 指叉電極應用簡介.............2
1.3 研究動機.............3
第二章 相關理論與設備介紹.............9
2.1 指叉電極電導理論.............9
2.2 電鍍製程與化學溶液介紹.............10
2.2.1 電鍍製程.............10
2.2.2 緩衝氧化物蝕刻液.............11
2.2.3 氯化氫溶液.............11
2.3 電路理論.............11
2.3.1 直接數位合成器.............11
2.3.2 開關式直流穩壓器.............12
2.4 設備介紹.............12
第三章 實驗流程及電路設計.............21
3.1 實驗流程.............21
3.1.1 指叉電極製備.............21
3.1.2 量測流程.............21
3.1.3 資料計算方法.............22
3.2 電路設計.............23
3.2.1 可程式波型產生器電路.............23
3.2.2 感測器端與波型縮放電路.............23
3.2.3 相位與增益檢測電路.............24
3.2.4 電壓控制電流源電路.............24
3.2.5 系統電源電路.............25
3.2.6 微控制器電路.............26
3.2.7 感測系統成品.............26
3.3 程式設計.............26
第四章 結果與討論.............46
4.1 緩衝氧化物蝕刻液稀釋量測.............46
4.2 鹽酸稀釋量測.............48
4.3 頻率對於感測器的影響.............49
4.4 特氣處理廠商的含氟溶液量測.............50
第五章 結論.............61
參考文獻.............62
附錄一.............64
附錄二.............65
附錄三.............70
Extended Abstract.............72

[1]Yole Développement, 2021, “Status of the MEMS industry 2021 Marker & Technology Report
https://s3.i-micronews.com/uploads/2021/07/YINTR21180-Status-of-the-MEMS-Industry-2021_Flyer.pdf
[2]Bosch Sensortec, 2020, “Digital pressure sensor BMP384 datasheet”
[3]Sensirion, 2014, “Humidity and temperature sensor IC SHT20 datasheet”
[4]Texas Instruments, 2017, “Precision centigrade temperature sensors LM35 datasheet”
[5]Vishay Semiconductors, 2021, “Low power, high sensitivity, I2C ambient light sensor VEML3235 datasheet”
[6]F. Wang et al., “A Miniaturized Integrated SAW Sensing System for Relative Humidity Based on Graphene Oxide Film”, 2020, IEEE Sensors Journal, Vol. 20, No. 17, pp:9733-9739
[7]Mun-Bae Jeon, Yeon Hwa Kwak, Byeong-Kwon Ju, and Kunnyun Kim, 2020, “Ultraviolet sensor with fast response characteristics based on an AgNW/ZnO bi-layer”, Sensors and Actuators A: Physical, Vol. 311
[8]Xinyu Wang, Lingling Du, Lina Cheng, Shoupei Zhai, Chao Zhang, Wen Wang, Yong Liang, Dachi Yang, Qiang Chen, and Gang Lei, 2022, “Pd/Ni nanowire film coated SAW hydrogen sensor with fast response”, Sensors and Actuators B: Chemical, Vol. 351
[9]Hakhyun Kim, Heewon Hwang, Seonhyeok Baek, and Dohyun Kim, 2018, “Design, fabrication and performance evaluation of a printed-circuit-board microfluidic electrolytic pump for lab-on-a-chip devices”, Sensors and Actuators A: Physical, Vol. 277, pp:73-84
[10]Long-Biao Huang, Kai-Leung Yung, Yan Xu, and Yun-Chuan Xie, 2010, “Injection molded plastic microfluidic biochips with integrated pumping electrode”, 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, pp:1017-1020
[11]Noor Azilah Mohd Kasim, Norli Abdullah, Faizah Md Yasin, and Mohd Hanif Yaacob et al., 2019, “Functionalized Carbon Nanofibers (CNFs) for Ammonia Gas Detection at Room Temperature”, Materials Today: Proceedings, Vol. 19, Part 4, pp:1459-1466
[12]M. Šetka, F.A. Bahos, D. Matatagui, M. Potoček, Z. Kral, J. Drbohlavová, I. Gràcia, and S. Vallejos, 2020, “Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene”, Sensors and Actuators B: Chemical, Vol. 304
[13]J. Kroutil et al., 2018, “Performance Evaluation of Low-Cost Flexible Gas Sensor Array with Nanocomposite Polyaniline Films”, IEEE Sensors Journal, Vol. 18, No.9, pp:3759-3766
[14]Anindya Nag, Nasrin Afasrimanesh, Shilun Feng, and Subhas Chandra Mukhopadhyay, “Strain induced graphite/PDMS sensors for biomedical applications”, Sensors and Actuators A: Physical, 2018, Vol. 271, pp:257-269
[15]Guo Y, Zhong M, Fang Z, Wan P, and Yu G, 2019, “A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human-Machine Interfacing”, Nano Letter, Vol. 19, Issue 2, pp:1143-1150
[16]Zainul Abedeen, and Poonam Agarwal, 2018, “Microwave sensing technique based label-free and real-time planar glucose analyzer fabricated on FR4”, Sensors and Actuators A: Physical, Vol. 279, pp:132-139
[17]Pakamas Chetpattananondh, Kittikhun Thongpull, and Kanadit Chetpattananondh, 2017, “Interdigital capacitance sensing of moisture content in rubber wood”, Computers and Electronics in Agriculture, Vol. 142, Part B, pp:545-551
[18]W. Olthuis, W. Streekstra, and P. Bergveld, 1995, “Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors”, Sensors and Actuators B: Chemical, Vol. 24, Issues 1-3, pp:252-256
[19]張欲祺,2000,“表面處理-第五版”,高立圖書。
[20]Le Tiec Yannick, 1999, “The chemistry of co-injected BOE”, Proceedings of the Sixth International Symposium, pp:99-36
[21]Eva Murphy, and Colm Slattery, 2004, “Ask The Application Enginneer-33: All About Direct Digital Synthesis”
https://www.analog.com/en/analog-dialogue/articles/all-about-direct-digital-synthesis.html
[22]Analog Devices, 2009, “MT-085 tutorial fundamentals of direct digital synthesis”
https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf
[23]Analog Devices, 2019, “Low power, 12.65mW, 2.3V to 5.5V, programmable waveform generator AD9833 datasheet”
[24]Analog Devices, 2017, “4MHz, 7nV/√Hz, low offset and drift, high precision amplifiers ADA4077-2 datasheet”
[25]Analog Devices, 2018, “LF-2.7GHz RF/IF gain and phase detector AD8302 datasheet”
[26]Analog Devices, 2005, “AN-691 application note”
[27]Texas Instruments, 2014, “Low power single operational amplifier LM321 datasheet”
[28]Texas Instruments, 2022, “Wide input range, step-down converter TPS5430 datasheet”
[29]Richtek, 2011, “500mA, low dropout, low noise ultra-fast without bypass capacitor CMOS LDO regulator RT9013 datasheet”
[30]Espressif Systems, 2022, “ESP32-WROOM-32E datasheet”
[31]Espressif Systems, 2021, “ESP32-D0WDQ6 datasheet”
[32]Wen-Ray Chen, and Yu-Liang Siao, under submission
電子全文 電子全文(網際網路公開日期:20270808)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top