跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/10 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉祐均
研究生(外文):YE, YOU-JUN
論文名稱:探討不同濃度之奈米銀線結合二氧化鈦複合光陽極製備染料敏化太陽能電池
論文名稱(外文):Preparation of photoanode composite layers with different concentrations of silver nanowires combined with TiO2 for dye-sensitized solar cells
指導教授:吳添全
指導教授(外文):WU, TIAN-CHIUAN
口試委員:吳添全洪連輝楊證富羅煜聘
口試委員(外文):WU, TIAN-CHIUANHUNG, LIAN-HUEIYANG, JENG-FULUO, YU-PIN
口試日期:2022-07-25
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:60
中文關鍵詞:染料敏化太陽能電池奈米銀線二氧化鈦刮刀法
外文關鍵詞:DSSCsSilver nanowiresTiO2Doctor blade method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  染料敏化太陽能電池(DSSCs)製作過程中含有奈米科技及有機物,屬於第三世代多晶矽太陽能電池,因製造成本低廉、製成容易且具備可饒性等優點,因此被視為極具發展潛力的太陽能電池。奈米銀線因其低電阻、高導電性及表面電漿共振等特性,適合做為製作光陽極的複合材料,有望提升染料敏化太陽能電池的效率。
  本次研究以不同濃度的奈米銀線及二氧化鈦複合漿料製備光陽極複合層,製成染料敏化太陽能電池,並比較以不同濃度奈米銀線製備的電池特性。之後再將奈米銀線與二氧化鈦複合層和純二氧化鈦漿料以刮刀法交互堆疊於Indium tin oxide (ITO)玻璃基板上,再以高溫爐進行退火處理,完成電極敏化後利用三明治堆疊法完成染料敏化太陽能電池之製作,並比較不同堆疊方式之光陽極製成的染敏電池特性。
  研究結果顯示,由0.05wt%奈米銀線和二氧化鈦複合光陽極與純二氧化鈦所製成的光陽極相比,其短路電流(Jsc)由5.32提升至7.53mA/cm2,光電轉換效率從3.08%提升至3.5%,效率約提升0.5%;而TST的堆疊方式其短路電流(Jsc)為8.44mA/cm2,光電轉換效率達到4.38%,與純二氧化鈦製成的光陽極相比,效率約提升了1.3%。

In this study, the photoanode composite layer was prepared with different concentrations of silver-nanowires and titanium dioxide composite paste to make dye-sensitized solar cells, and the characteristics of the cells prepared with different concentrations of silver-nanowires were compared. Then, the silver-nanowire the titanium dioxide composite layer, and the pure titanium dioxide paste are alternately stacked on the Indium tin oxide (ITO) glass substrate by the doctor blade method, and then annealed in a high-temperature furnace, and the electrode sensitization is completed by the sandwich stacking method. Fabrication of dye-sensitized solar cells, and comparison of the characteristics of dye-sensitized cells made of photoanode stacked in different ways.
The research results show that the short-circuit current (Jsc) increased from 5.32 to 7.53mA/cm2, and the photoelectric conversion efficiency increased from 3.08% compared with the photoanode made of pure titanium dioxide. It is increased to 3.5%, and the efficiency is increased by about 0.5%; while the short-circuit current (Jsc) of the TST stacking method is 8.44mA/cm2, and the photoelectric conversion efficiency reaches 4.38%. Compared with the photoanode made of pure titanium dioxide, the efficiency is improved by about 1.3%.

摘要......i
Abstract......ii
誌謝......iii
目錄......iv
表目錄......vi
圖目錄......vii
1.1前言......1
1.2研究動機與目的......2
第二章 文獻回顧......3
2.1染料敏化太陽能電池(Dye-sensitized solar cells, DSSCs)......3
2.1.1太陽能電池發展歷史......3
2.1.2染料敏化太陽能電池的構成......3
2.1.2.1透明導電膜玻璃(Transparent Conducting Oxide, TCO)......4
2.1.2.2半導體薄膜工作電極(Working Electrode, WE)......5
2.1.2.3鉑金對電極(Pt Counter Electrode)......5
2.1.2.4染料(Dye)......6
2.1.2.5電解液(Electrolyte)......8
2.1.3染料敏化太陽能電池工作原理......10
2.2二氧化鈦應用與基本特性簡介......12
2.3銀基本特性簡介 (Sliver)......14
第三章 實驗方法......16
3.1實驗藥品與儀器設備......16
3.1.1實驗藥品......16
3.1.2實驗儀器設備......17
3.2實驗流程......18
3.2.1製備染料敏化太陽能電池......19
3.2.1.1ITO透明導電玻璃基板清洗......19
3.2.2製備二氧化鈦與奈米銀線複合漿料......20
3.2.2.1奈米銀線規格......20
3.2.2.2調配奈米銀線與二氧化鈦複合漿料......21
3.2.2.3製備奈米銀線與二氧化鈦複合薄膜......22
3.2.2.4調配染料與工作電極敏化......23
3.2.2.5調配電解液......23
3.2.2.6製備對電極......23
3.2.2.7染料敏化太陽能電池的封裝......24
3.3實驗儀器與特性分析......25
3.3.1複合薄膜之特性分析......25
3.3.1.1場發射掃瞄式電子顯微鏡(FE-SEM)......25
3.3.2染料敏化太陽能電池之特性分析......27
3.3.2.1紫外光/可見光光譜儀(UV-Vis)......27
3.3.2.2電壓–電流特性量測......28
3.3.2.3電化學阻抗頻譜分析量測......31
3.3.2.4X射線衍射(X-ray Diffraction)......36
第四章 結果與討論......38
4.1場發射掃描式電子顯微鏡之複合薄膜分析......38
4.1.1二氧化鈦與奈米銀線複合薄膜表面分析......38
4.1.2二氧化鈦與奈米銀線複合薄膜截面分析......39
4.3染料敏化太陽能電池量測分析......41
4.3.1添加不同濃度奈米銀線對染料敏化太陽能電池特性的影響......41
4.3奈米銀線複合薄膜不同堆疊對DSSCs的性能影響......45
4.3.1奈米銀線複合薄膜之截面分析......45
4.3.2度奈米銀線對染料敏化太陽能電池特性的影響......46
第五章 結論......52
參考文獻......53
Extended Abstract......56
Abstract......56
Experimental......57
Results and discussion......57
Conclusions......60
Reference......60
[1]Antonia Herzog, Timothy Lipman, Daniel Kammen, 2012, “Renewable energy sources”, Renewable and appropriate energy laboratory:12.
[2]Thomas, Hsu, Lin, Lee, Ho, Lai, Cheng, Chou, 2008, “Disubstituted thiophene-based organic dues for solar dells” Chem mater, 20 ,1830-1840
[3]Tsubomura, Matsumura, Nomura, Amamiya, 1976, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell” Nature, 261,402-403.
[4]Regan, Gratzel, 1991, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 335, 737–40.
[5]Linsebigler, Yates, 1995, “Photocatalysis on TiO2 surfaces: principles, mechanisms,and selected results”, Chemical Reviews, 95, 735.
[6]Kang, Jing, Guo, Cui, Zhou, 2009, “Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst”, Journal of Physical Chemistry, 113, 1006.
[7]Chen, Quan, Yu, Zhao, Zhang, 2008, “Fabrication of TiO2−pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution”, Journal of Physical Chemistry C, 112, 9285.
[8]Zhou, Hu, Peng, Qu, 2010, “Plasmon-assisted degradation of toxic pollutants with Ag−AgBr/Al2O3 under visible-light irradiation”, Journal of physical chemistry, 114, 2746.
[9]沈輝,曾祖勤,馬振基,“太陽能光電技術Solar energy & photovoltaic technology”,武男圖書出版股份有限公司
[10]林晉慶,2010,“透明導電薄膜材料應用於太陽電池元件之發展”,工業材料雜誌,279。
[11]王麗萍,2010,“染料敏化太陽能電池脂基板與透明導電膜介紹”,工業材料,280, 143-153。
[12]呂宗昕,2011,“全面攻進奈米科技與太陽能電池”,台北市:天下遠見出版股份有限公司。
[13]王藝蒙,2019,“Preparation of counter electrodes based on carbonaceous materials and their applications in dye-sensitized-solar-cells”,中國知網,09,15-20。
[14]童永良,2008,“釕金屬染料在染料敏化太陽電池所扮演的關鍵性角色”,工業材料雜誌,255期。
[15]劉茂煌,2003,“奈米光電電池”,工業材料,203期,頁91-97.
[16]Thavasi, Renugopalakrishnan, Ramakrishna, 2009, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Materials science and engineering: r: reprots, 63, 81-99.
[17]Barbe, Arendse, Comte, Jirousek, Lenzmann, Shklover, Gratzel, 1997, “Nanocrystalline titanium oxide electrode for photovoltaic application”, Journal of american ceramic., 80, 3157.
[18]劉芳丞,2021,“探討不同濃度的奈米碳管及石墨烯與二氧化鈦複合光陽極製備染料敏化太陽能電池”,國立虎尾科技大學電子所碩士論文。
[19]I-Ping Liu, Yun-Yu Chen, Yu-Syuan Cho, Li-Wei Wang, Chung-Yu Chien, YuhLang Lee, 2001, “Double-layered printable electrolytes for highly efficient dye-sensitized solar cells”, Journal of power sources 482, 228962.
[20]Khorasanian, Dehghan, Shariat, Bahrololoom, Javadpour, 2011, “Microstructure and wear resistance of oxide coatings on Ti–6Al–4V produced by plasma electrolytic oxidation in an inexpensive electrolyte”, Surface and coatings technology, 206, 1496-1500.
[21]林宇杏,2021,“高效能膠固態電解質在先進電池元件的應用”,工程,94卷,03期。
[22]翁敏航,2010,“太陽能電池”,東華書局,第七章。
[23]Sheppard, 1894, “New ceramics on the horizon”, July.
[24]Gupta Shipra Mital, Tripathi Manoj, 19 May 2011,“A review of TiO2 nanoparticles”, chinese science bulletin, 56, 16, 1639-1657.
[25]陳名璋,2020,“以不同濃度的奈米碳管與二氧化鈦光陽極複合層製備染料敏化太陽能電池”,國立虎尾科技大學電子所碩士論文。
[26]Dorian Hanaor, Charles Sorrell, 2011, “Review of the anatase to rutile phase transformation”, Journal of materials science, 46, 855-874.
[27]Ulrike Diebold, 2003, “The surface science of titanium dioxide”, Surface science Reports, 48, 5-8.
[28]Kam, 1983, “Absorption and scattering of light by small particles - bohren, c, huffman”, Dr. nature, 306(5943), 625-625.
[29]Jensen, Malinsky, Haynes,Van Duyne, 2000, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles”, Journal physical chemistry b2000, 104(45), 10549-10556.
[30]林寬鋸,陳柏宏,2013,“利用金奈米粒子之局域性表面電漿共振效應提升染料敏化太陽能電池之光電流”,國立中興大化學系碩士學位論文。
[31]Jörg Kottmann, Olivier Martin, David Smith, Sheldon Schultz, 2001, “Plasmon resonances of silver nanowires with a nonregular cross section”, Physical. rev. b2001, 64, 235402
[32]Murphy, Jana, 2002, “Controlling the aspect ratio of inorganic nanorods and nanowires”, Adv. mater, 14, 80.
[33]林秉萱,2008,“表面電漿共振材料之開發及應用”,國立交通大學材料科學與工程學系碩士論文。
[34]羅聖全,2013,“本月專題_科學基礎研究之重要利器─掃描式電子顯微鏡(SEM)”,科學研習,NO.52-5。
[35]AshrafHossain, JieunPark, DayoungYoo, Youn-kyoung Baek, YangdoKimd, Soo HyungKimae, DongyunLee, 2016, “Surface plasmonic effects on dye-sensitized solar cells by SiO2-encapsulated Ag nanoparticles”, Current applied physics, 16, 3, 397-403
[36]洪逸文,2013,“對流層大氣能量的主要來源”,科學月刊,519期。
[37]顏銓佑,2009,“奈米碳管/奈米複合材料於染料敏化太陽能電池之製備與性質研究”,清華大學化學工程學系學位論文。
[38]Diantoro, Suprayogi, Hidayat, Taufiq, Fuad, Suryana, 2018, “Shockley’s equation fit Analyses for solar cell parameters from I-V curves”, International journal of photoenergy, 10, 1155.
[39]洪昭南,徐逸明,王宏達,2002,“奈米碳管結構及特性簡介”,化工技術,49(1)期,頁23-29。
[40]Han, Koide, Chiba, March, 2004, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Applied physical letters, 84, 2433-2435, 29.
[41]Adachi, Sakamoto, Jiu, Ogata, Isoda, 2006, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, Journal physical chemistry b, 110, 13872-13880.
[42]許樹恩,吳泰伯,1996,“X光繞射原理與材料結構分析”,中國材料科學學會。
[43]Yu-Yang Tseng, 2021, “Preparation of photoanode composite layers with different concentrations of silver nanowires combined with TiO2 for dye-sensitized solar cells”, 國立虎尾科技大學電子所碩士論文。
[44]陽文都,謝慶燮,2011,“介孔 TiO2-xNx 膜之合成及其光電性質之研究(第3年)研究成果報告(完整版)”,行政院國家科學委員會專題研究計畫成果報告
[45]陳祈緯,2010,“以氣相法製備氮摻雜之可見光觸媒/中孔洞分子篩複合材料同時處理VOCs及NOx 之研究”,國立交通大學環境工程學研究所碩士論文。
[46]Gregg, Pichot, Ferrere, Fields, 2001, “Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces”, Journal physical chemistry B, 105, 7, 1422–1429.
[47]Md Ashraf Hossain, Jieun Park, Dayoung Yoo, Youn-kyoung Baek, Yangdo Kim, Soo Hyung Kim, Dongyun Lee, 2016, “Surface plasmonic effects on dye-sensitized solar cells by SiO2- encapsulated Ag nanoparticles”, Current applied physics161

電子全文 電子全文(網際網路公開日期:20270816)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊