跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陶俊英
研究生(外文):DAO TUAN ANH
論文名稱:精密機器系統的齒輪與煞車動態加工機構虛擬模型分析
論文名稱(外文):The Gear and Brake Dynamic Machining Mechanisms Virtual Model Analysis of Precision Machine Systems
指導教授:黃運琳黃運琳引用關係
指導教授(外文):HWANG, YUNN-LIN
口試委員:黃社振劉佳營
口試委員(外文):HUANG, SHE-ZHENLIU, JIA-YING
口試日期:2022-07-22
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械設計工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:72
中文關鍵詞:多體系統撓性體虛擬模型正齒輪行星齒輪液壓煞車器精密機械
外文關鍵詞:Precision machineMultibody systemsFlexible bodyVirtual modelsSpur gearPlanetary gearHydraulic brake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
如今,精密加工對於製造機器零組件系統和工業用工具至關重要。越來越複雜的零組件系統需要更精確的加工系統。齒輪和煞車系統是有助於精密機器系統效率的眾多關鍵零組件系統中的兩個。為了研究和改進這些組件系統,電腦輔助工具在數值計算和模擬中扮演非常有效的角色。在本研究中,我們將評估上述兩個組件系統的動態影響。動態仿真使用 RecurDyn 軟件進行,而機構的模態分析使用 ANSYS WORKBENCH 有限元分析軟件進行。為了研究可行性,將提出將理論計算與軟體相結合的模擬方法,從而提高方法的準確性並開發可互相對比模型的方法。本論文亦將討論用於評估機械零組件可操作性的其他研究方法,以及這些方法的優缺點。總而言之,完成的工作將有助於研究和開發,最大限度地減少製造時間,提高研究對象利用的有效性,並促進機械開發。
Nowadays, precision machining is crucial for manufacturing machine components and industrial tools. Components that are increasingly complex require more precise machining systems. The gear and brake systems are two of the numerous critical components that contribute to the Precision Machine Systems' efficiency. In order to research and improve these components, computer-aided tools play an effective role in numerical computation and simulation. In this investigation, we will evaluate the dynamic influence of the two aforementioned components. The dynamic simulation is carried out with the RecurDyn software, whilst the modal analysis of mechanisms is carried out with the ANSYS WORKBENCH finite element analysis software. To study the feasibility, simulation methods integrating theoretical calculations with software will be presented, consequently enhancing the accuracy of the method and developing methods for comparable models. This thesis will also discuss additional research methodologies used to evaluate the operability of mechanical components, as well as the merits and downsides of these methods. Generally speaking, the completed works will contribute to research and development, minimize manufacturing time, increase the effectiveness of research object utilization, and facilitate mechanical development.
摘要...i
Abstract...ii
Acknowledgements...iii
Table of contents...iv
List of Tables...vii
List of figures...viii
Nomenclature...xi
Chapter 1: Introduction...1
1.1. Motivation...1
1.2. Software introduction...4
1.2.1 ANSYS...4
1.2.2 RecurDyn...7
1.3. Thesis organization...9
Chapter 2: Background and Theory...11
2.1. Multibody systems...11
2.2. Finite Element Method...14
2.2.1 FFlex...16
2.2.2 : RFlex (Floating Frame of Reference Formulation)...18
2.3. Contact mechanism...19
Chapter 3: Fundamental and Analysis of Gear System...21
3.1. Spur gear pair...21
3.1.1 Initial conditions...23
3.1.2 Theoretical calculation of the Spur gear system...23
3.1.3 Methodology of Spur gear Rigid body Analysis using RecurDyn software...28
3.1.4 Methodology of Spur gear FFlex Analysis using RecurDyn software...32
3.1.5 Methodology of Spur gear RFlex Analysis using RecurDyn software...34
3.2. Planetary Gear System...34
3.2.1 : Planetary gear Analysis using Toolkit RecurDyn...35
3.2.2 . Planetary gear Analysis using KISSsoft RecurDyn...42
Chapter 4: Fundamental and Analysis of Hydraulic Brake System...44
4.1. System Characteristic...44
4.2. Operation and Theoretical calculation of Brake System...46
4.3. Methodology of Brake System Analysis...48
4.3.1 . Rigid body Analysis RecurDyn...48
4.3.2 . Deformation Analysis of Brake Pad...50
4.3.3 Stress and Deformation of Brake Pad...50
Chapter 5: Simulation result of Gear System...52
5.1. Simulation result of Spur Gear System...52
5.2. Simulation result of Planetary Gear System...56
Chapter 6: Simulation result of Brake System...60
6.1. Rigid body Analysis RecurDyn...60
6.2. Deformation Analysis of Brake Pad...61
6.3. Stress and Deformation of Brake Pad...64
Chapter 7: Conclusion...67
References...68
Extended Abstract...70


[1] Huo D. and Cheng K., "A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives," in Second International Conference on Multi-Material Micro Manufacture, 2006.
[2] Sun X. and Cheng K., Micro-/Nano-Machining through Mechanical Cutting, William Andrew Publishing, 2010.
[3] Low K. S., "A High Performance Precision Machine," in Conference on Robotics, Automation and Mechatronics, 1-3 December, 2004.
[4] Huang X., Hu S., Zhang Y. and Xu Y., "A method to determine kinematic accuracy reliability of gear," Mechanism and Machine Theory, vol. 92, pp. 200-212, 2015.
[5] Sarkar S., Rathod P. P. and Modi A. J., "Research Paper on Modeling and Simulation of Disc Brake to Analyse Temperature Distribution using FEA," International Journal for Scientific Research & Development, vol. 2, no. 03, pp. 491-493, 2014.
[6] "Introduction to Ansys," https://www.designtechcadacademy.com/knowledge-base/ansys-software.
[7] "RecurDyn Introduction," https://functionbay.com/documentation/onlinehelp/default.htm#!Documents/introduction.htm.
[8] Jerkovsky W., "The Structure of Multibody Dynamics Equations," J. GUIDANCE AND CONTROL, vol. 1, pp. 173-181, MAY-JUNE 1978.
[9] Fleischer G. E., "Multi-Rigid-Body Attitude Dynamics," in Dynamics of Multibody Systems, Pasadena, CA, pp. 36-47, 1977.
[10] Shabana A., "Equivalence of the floating frame of reference approach and finite element formulations," International Journal of Non-linear Mechanics, vol. 33, pp. 417-432, 1998.
[11] Shabana A., Dynamics of Multi-body Systems 3rd, Cambridge University Press, 2005.
[12] Ashok R. C. and Tirupathi D. B., Introduction to Finite Elements in Engineering, Prentice Hall, 2002.
[13] Robert D. C., David S. M., Michael E. P. and Robert J. W., Concepts and Applications of Finite Element Analysis, John Wiley, 2002.
[14] Tran I. T. and Ngo N. K., Phuong Phap Phan Tu Huu Han, Hanoi, 2007.
[15] Bratland M., Haugen B. and Rølvåg T., "Modal analysis of active flexible multibody systems," Computers & Structures, vol. 89, p. 750–761, 2011.
[16] Mccauley C. J., in Machinery's handbook, New York, New York, NY : Industrial Press, p. 2125, 2012.
[17] Hillier V., "Planetary gearing and unidirectional clutches," in Fundamentals of Motor Vehicle Technology (4th ed.), UK, Nelson Thornes, p. 244, 2001.
[18] Harrison H. and Nettleton T., in Principles of Engineering Mechanics (2nd ed.), UK, Oxford, p. 58, 1994.
[19] Mabie H. and Reinholtz C. F., in Mechanisms and Dynamics of Machinery, USA, p. 251, 1978.
[20] Sutar A. and Sutar M., "Torque Measurement in Epicyclic Gear Train," International Journal of Engineering and Advanced Technology (IJEAT), vol. 56, p. 186, 2016.
[21] Freudenstein E. and Pennestri F., "The Mechanical Efficiency of Planetary Gear Trains," Journal of Mechanical Design, vol. 115, pp. 645-651, 1993.
[22] Krstich M., "Determination of the General Equation of the Gear Efficiency of Planetary Gear Trains," International Journal of Vehicle Design, vol. 8, pp. 365-374, 1987.
[23] Stephen S. P. R. and Radzevich P., in Dudley's Handbook of Practical Gear Design and Manufacture, CRC Press, p. 246, 2016.
[24] "Calculating load on planetary gear from driving torque," https://engineering.stackexchange.com/questions/16136/calculating-load-on-planetary-gear-from-driving-torque.
[25] "JIS-SCM435," https://www.jfs-steel.com/zh-TW/steelDetail/JIS-SCM435/JIS-SCM435-G4105.html.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top