|
中文部分: 國家發展委員會,中華民國人口推估(2020 至 2070年),國家發展委員會https://pop-proj.ndc.gov.tw/download.aspx?uid=70&pid=70 , (2020). 李美慧。從世界人口展望探討日本情勢及其因應政策。國家實驗研究院科技政策研究與資訊中心, (2019). 英文部分: United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights, (ST/ESA/SER.A/423), (2019). C. Jay, et al. "Wearable sensors for reliable fall detection." 2005 IEEE engineering in medicine and biology 27th annual conference, (2006). L. Dima, Y. Zigel, I. Gannot. "Fall detection of elderly through floor vibrations and sound." 2008 30th annual international conference of the IEEE engineering in medicine and biology society, (2008). M. Georgios, D. Makris. "Fall detection system using Kinect’s infrared sensor." Journal of Real-Time Image Processing, (2014). Y. L. Cun, Y. Bengio. "Convolutional Networks for Images, Speech, and Time-Series. Cambridge.", MA: MIT Press, Pages 255-258 (1995). Krizhevsky, I. Sutskever, G. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks.", Advances in Neural Information Processing Systems, Volume 1, Pages 1097-1105 (2012). K. He, X. Zhang, S. Ren, J. Sun. "Deep Residual Learning for Image Recognition.", IEEE Conference on Computer Vision and Pattern Recognition, Pages 770-778(2016). M. Tomas, et al. "Recurrent Neural Network Based Language Model." Eleventh annual conference of the international speech communication association, Volume 2, No. 3, Pages 1045-1048 (2010). K. Jun, D. Lee, K. Lee, S. Lee, M. S. Kim, "Feature Extraction Using an RNN Autoencoder for Skeleton-Based Abnormal Gait Recognition.", IEEE Access, Volume 8, Pages 19196-19207 (2020). S. Hochreiter, J. Schmidhuber. "Long Short-Term Memory Neural Computation", Volume 9, Issue 8, Pages 1735-1780 (1997). S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, K. P. Soman. "Stock price prediction using LSTM, RNN and CNN-sliding window model.", 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Pages 1643-1647 (2017). A. Graves, N. Jaitly and A. Mohamed, "Hybrid speech recognition with Deep Bidirectional LSTM.", 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Pages 273-278 (2013). Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, Y. Sheikh, "OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.", in IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 43, no 1, Pages 172-186 (2021). Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell. "Caffe: Convolutional Architecture for Fast Feature Embedding.", arXiv preprint arXiv:1408.5093 (2014). K. Simonyan and A. Zisserman. "Very deep convolutional networks for large-scale image recognition" arXiv preprint arXiv:1409.1556 (2014). NVIDIA TensorRT. 2021. https://developer.Nvidia.com/tensorrt (2021) S. Yegulalp, "Facebook brings GPU-powered machine learning to Python.", InfoWorld 19 (2017). A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer. "Automatic differentiation in PyTorch.". In NIPS Workshop (2017) . W. H. Chen. "Data Augmentation for Human Activity Recognition.", in Bulletin of College of Engineering National Ilan University, No.13, Pages 12-29 (2019). E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, B. Schiele, " A deeper, stronger, and faster Multi-Person Pose Estimation Model.", in European Conference on Computer Vision. Springer, Pages 34–50 (2016). P. C. Chen, C. H. Chang, Y. W. Chan, Y. T. Tasi, W. C. Chu, " An Approach to Real-Time Fall Detection based on OpenPose and LSTM.", CompSAC 2022, Pages 1573-1578 (2022). L. C. Bi, et al. "A Framework for Fall Detection Based on OpenPose Skeleton and LSTM/GRU Models.", Applied Sciences (2021). P. Svarny, Z. Straka, M. Hoffmann, "Toward Safe Separation Distance Monitoring From RGB-D Sensors In Human-Robot Interaction.", International PhD Conference on Safe and Social Robotics (SSR2018), Pages 11-14 (2018). T. Kohei, M. Kono, J. Rekimoto, "Post-data augmentation to improve deep pose estimation of extreme and wild motions.", 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, (2019). B. Kwolek, M. Kepski, "Human Fall Detection on Embedded Platform Using Depth Maps and Wireless Accelerometer.", Computer Methods and Programs in Biomedicine, Volume 117, Pages 489-501 (2014). Onnx. [Online]. Available: https://github.com/onnx/onnx (2017). H. Vanholder, "Efficient inference with tensorrt." GPU Technology Conference, Volume 1 (2016). NVIDIA TensorRT Developer Guide demonstrates https://docs.Nvidia.com/deeplearning/tensorrt/developer-guide. (2022).
|