跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴雨聲
研究生(外文):Yu-Sheng Lai
論文名稱:水黃皮花部成份之研究
論文名稱(外文):Studies on the Constituents of Flower of Pongamia pinnata (Linn.) Pierre ex Merr.
指導教授:黃克峯黃克峯引用關係陳香惠
指導教授(外文):Keh-Feng HuangShia-huy Chen
口試委員:黃克峯陳香惠林孝道官長慶
口試委員(外文):Keh-Feng HuangShia-huy ChenXiao-Dao LinChang-Qing Guan
口試日期:2022-01-25
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:水黃皮花部三萜類黃酮類酚類
外文關鍵詞:Pongamia pinnataflowertriterpenoidsflavonoidsphenols
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
水黃皮(Pongamia pinnata (Linn.) Pierre ex Merr.)為豆科(Leguminosae)水黃皮屬(Pongamia),在台灣常作為行道樹及防風林,具有治癬疥、風濕與潰瘍等藥理活性。
本研究由水黃皮花部之乙酸乙酯可溶層中,經矽膠管柱層析共分離出下列化合物,分別是:friedelin(A)、lupenone(B)、vanillic acid(C)、pongachalcone I(D)、genistein(E)、ovalichalcone(F)和obovatin methyl ether(G),以上化合物均經由光譜分析與NMR光譜文獻數據比對確定結構。
其中lupenone、vanillic acid、Pongachalcone I、genistein和obovatin methyl ether為首次由水黃皮植物分離得到。

Pongamia pinnata (Linn.) Pierre ex Merr. (Leguminosae) is often used as a sidewalk tree or a windbreak tree in Taiwan. According to the literature, this plant has pharmacological activity which has been used for treating ringworm, scabies, rheumatism and ulcers.
From the ethyl acetate soluble fraction of the flowers of Pongamia pinnata, seven compounds were obtained by column chromatographic separation. These compounds are friedelin (A), lupenone (B), vanillic acid (C), pongachalcone I (D), genistein (E), ovalichalcone (F) and obovatin methyl ether (G) respectively. The structures of these compounds were identified by using spectrometric methods and comparing with data in literature.
Among them, lupenone, vanillic acid, pongachalcone I, genistein, and obovatin methyl ether were firstly isolated from this plant in the literature.
摘要 iii
第一章 緒論 1
第一節 植物簡介 1
第二節 水黃皮相關之應用 3
第三節 水黃皮抗氧化活性物質 4
第四節 研究動機 5
第五節 水黃皮相關成份之文獻 6
第六節 水黃皮文獻之成份結構 8
第二章 實驗部分 33
第一節 使用儀器 33
第二節 藥品與溶劑 34
第三節 植物萃取與分離 35
第三章 結果與討論 37
一、 水黃皮花部成分結構 37
二、 水黃皮花部成份之鑑定 38
一、 Compound A 38
二、 Compound B 44
三、 Compound C 50
四、 Compound D 57
五、 Compound E 65
六、 Compound F 71
七、 Compound G 79
三、 實驗數據 87
第四章 結論 94
參考文獻 96

趙淑妙、劉翠雅 院區植物圖鑑(I)木本植物 中央研究院植物研究所 66,2002
應紹舜 觀賞樹木 羅盤出版事業股份有限公司 90,1981
許佳玲、洪佳君、沈競辰 台灣原生觀賞綠美化植物─低海拔 行政院農業委員會林務局 82,2004
邱年永、張永章 原色台灣藥用植物圖鑑(4) 台北南天書局 104,1987
何偉真、林德勳、謝昌衛、張世良、黃雯雯、陳信泰 台灣野生藥用植物圖鑑(三)
S. Mitra, A. Ghose, N. Gujre, S. Senthilkumar, P. Borah, A. Paul, L. Rangan, A review on environmental and socioeconomic perspectives of three promising biofuel plants Jatropha curcas, Pongamia pinnata and Mesua ferrea. Biomass and Bioenergy 151, 2021, 106-173
K. Dharmendra, K. T. Durgesh, L. Shiliang, K. S. Vivek, S. Shivesh, K. D. Nawal, M. P. Sheo, K. C. Devendra, Pongamia pinnata(L.) Pierre tree seedlings offer a model species for arsenic phytoremediation. Plant Gene 11, 2017, 238-246
N. Mukta, I. Y. L. N. Murthy, P. Sripal, Variability assessment in Pongamia pinnata (L.) Pierre germplasm for biodiesel traits. Industrial Crops and Products 29, 2009, (2-3), 536-540
G. Dwivedi, M. P. Sharma, Prospects of biodiesel from Pongamia in India. Renewable and Sustainable Energy Reviews 32, 2014, 114-112
G. Navaneethakrishnan, T. Karthikeyan, S. Saravanan, V. Selvam, N. Parkunam, Development and investigation of Pongamia pinnata epoxy composites. Materials Today: Proceedings 21, 2020, (1), 130-132
黃秀瑩 水黃皮抗氧化活性成分之研究 碩士論文-靜宜大學應用化學研究所 2004
曾偉翔 水黃皮果實與花部成份之研究 碩士論文-靜宜大學應用化學研究所 2006
簡子庭 水黃皮莖皮成份之研究 碩士論文-靜宜大學應用化學研究所 2008
黃群祐 水黃皮果實部分抗氧化活性成分之研究(II) 碩士論文-靜宜大學應用化學研究所 2011
蔣欣芸 水黃皮根皮成份之研究 碩士論文-靜宜大學應用化學研究所 2012
李佳蒨 水黃皮果莢抗氧化活性成分之研究 碩士論文-靜宜大學應用化學研究所 2014
M. J. Rekha, B. K. Bettadaiah, S. P. Muthukumar, K. Govindaraju. Synthesis, characterization and anti-inflammatory properties of karanjin (Pongamia pinnata seed) and its derivatives. Bioorganic Chemistry 106, 2021, 104471
M. Akram, S. Nimesh, M. A. Chishti, M. I. Ahmad, S. Dhama, M. Lal, Pongamia pinnata: an updated review on its phytochemistry, & pharmacological uses, Pharmacy & Pharmacology International Journal 9 (5), 2021, 194-199
T. Tanaka, M. Iinuma, K. Yuki, Y. Fujii, M. Mizuno, Two new B-hydroxychalcones from the root bark of Pongamia pinnata. Chemical & Pharmaceutical Bulletin 39(6), 1991, 1473-1475
T. Tanaka, M. Iinuma, K. Yuki, Y. Fujii, M. Mizuno, Flavonoids in root bark of Pongamia pinnata. Phytochemistry 31 (3), 1992, 993-998
D. Chauhan, J. S. Chauhan, Flavonoid Glycosides from Pongamia pinnata. Pharmaceutical Biology 40(3), 2001, 171-174
E. J. Carcache-Blanco, Y. H. Kang, E. J. Park, B. N. Su, L. B. S. Kardono, S. Riswan, H. H. S. Fong, J. M Pezzuto., A. D. Kinghorn, Constituents of the Stem Bark of Pongamia pinnata with the potential to induce quinone reductase. Journal of Natural products 66(9), 2003, 1197-1202
P. P. Yadav, G. Ahmad, R. Maurya, Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 65 (4), 2004, 439-443
G. Ahmad, P. P. Yadav, R. Maurya, Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 65 (7), 2004, 921-924
L. Li, X. Li, C. Shi, Z. Deng, H. Fu, P. Proksch, W. Lin, Pongamia A-E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochemistry 67(13), 2006, 1347-1352
R. Wen, H. N. Lv, Y. Jiang, P. F. Tu, Anti-inflammatory flavone and chalcone derivatives from the roots of Pongamia pinnata (L.) Pierre. Phytochemistry 149, 2018, 56-63
R. Wen, H. N. Lv, Y. Jiang, P. F. Tu, Anti-inflammatory isoflavones and isoflavanones from the roots of Pongamia pinnata (L.) Pierre. Bioorganic & Medicinal Chemistry Letters 28 , 2018 1050–1055
Y. Cao, L. Xie, K. Liu, Y. D. Liang, X. L. Dai, X. Wang, J. Lu, X. M. Zhang, X. F. Li. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacological Research 174, 2021, 105919
S. Han, Y. Luo, Z. M. Hua, D. D. Qin, F. J. Luo. Targeting gut microbiota in type 2 diabetes mellitus: Potential roles of dietary flavonoids. Food Bioscience 45, 2022, 101500
Peng Z. F., Dieter S., Alfred B., Ramanathan S., Ngoh K. G., Tet F. C., Swee M. T., Chia L. S. Antioxadant flavoids from leaves of Phlygonum hydropiper L. Phytochemistry 62, 2003, 219-228
Takako Y., Chen C. P., Erbo D., Takashi T., Nonaka G. I., I. Nishoka. Study on the inhibitory effect of Tannis and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochemical pharmacology 56, 1998, 213-222
S. L. Badole, S. M. Chaudhari, G. B. Jangam, A. D. Kandhare, S. L. Bodhankar. Cardioprotective Activity of Pongamia pinnata in Streptozotocin-Nicotinamide Induced Diabetic Rats. BioMed Research International 2015, 403291
D. Dwivedi, M. Dwivedi, S. Malviya, V. Singh. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. Journal of Traditional and Complementary Medicine 7(1), 2017, 79-85
M. J. Rekha, B. K. Bettadaiah, T. C. Sindhu Kanya, K. Govindaraju. A feasible method for isolation of pongamol from karanja (Pongamia pinnata) seed and its anti-inflammatory activity. Industrial Crops and Products 154, 2020, 112720
X. L. Ouyang, L. X. Wei, X. M. Fang, H. S. Wang, Y. M. Pan, Flavonoid constituents of Euonymus fortune. Chemistry of Natural Compounds 49(3), 2013, 428-431
P. M. Rodrigues, J. V. D. Gomes, C. M. Jamal, Á. C. Neto, M. L. Santos, C. W. Fagg, Y. M. Fonseca-Bazzo, P. O. Magalhães, P. M. Sales, D. Silveira, Triterpenes from Pouteria ramiflora (Mart.) Radlk. leaves (Sapotaceae). Food and Chemical Toxicology 109, 2017, 1063-1068
L. Ni, Y. T. Qiu, Y. Shi, J. X. Chen, H. Y. Xu, Chemical constituent of the roots of Ormosia hosiei. Chemistry of Natural Compounds, 55 (5), 2019, 972-974
K. Messaoud, R. S. Azzedine, L. Francisco, B. Ignacio, M. Paul, M. Ahmed, A. Souad, B. Samir, B. Jaime, B. Fadila, Secondary metabolites and antioxidant activity of Limonium duriusculum (de Girard) Kuntze extracts. Asian Journal of Chemistry 28(12), 2016, 2695-2700.
Y. R. Lee, X. Wang, L. K. Xia. An efficient and rapid synthetic route to biologically interesting pyranochalcone natural products. Molecules 12, 2007, 1420-1429
S. Otto, W. Kristiina. Synthesis of phytoestrogenic isoflavonoid disulfates. Steroids 69, 2004, 613-616
M. Roy, S. R. Mitra, A. Bhattacharyya, N. Adityachaudhury. Candidone, a flavanone from Tephrosia Candida, Phytochemistr 25, 1986, (4), 961-962
L. M. Muiva, A. Yenesew, S. Derese, M. Heydenreich, M. G. Peter, H. M. Akala, F. Eyase, N. C. Waters, C. Mutai, J. M. Keriko, D. Walsh. Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata. Phytochemistry Letters 2, 2009, 99-102
C. C. Andrei, Da T. Ferreira, M. Faccione, L. A. B.de Moraes, M. G. de Carvalho, R. Braz-Filho. C-prenylflavonoids from roots of Tephrosia tunicate. Phytochemistry 55, 2000, (7), 799-804
N. Ahmadi, S. Safari, N. Mirazi, S. A. Karimi, A. Komaki. Effects of vanillic acid on Aβ1-40-induced oxidative stress and learning and memory deficit in male rats. Brain Research Bulletin 170, 2021, 264-273
N. Sharma, N. Khurana, A. Muthuraman, P. Utreja. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson's disease rat model. European Journal of Pharmacology 903, 2021, 174112
M. L. Gan, T. Zheng, L. Y. Shena, Y Tan, Y. Fan, S. R. Shuai, L. Bai, X. W. Li, Jin. Y. Wang, S. H. Zhang, L. Zhu. Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomedicine & Pharmacotherapy 112, 2019, 108618
L. P. Yang, W. L. Zhang, S. Y. Zhi, M. Y. Liu, M. J. Zhao, C. B. Qin, X. Yan, J. C. Feng, G. X. Nie. Effects of genistein on glucose and lipid metabolism of common carp (Cyprinus carpio. L) in vivo and in vitro. Aquaculture Reports 22, 2022, 100930

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊