跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊世裕
研究生(外文):Yang, Shih-Yu
論文名稱:利用深度學習技術增進我國海岸通緝犯查緝成效
論文名稱(外文):Improving the Effectiveness of Face Recognition for Wanted Criminals on the Coast of Taiwan Based on Deep Learning
指導教授:劉志俊劉志俊引用關係翁添雄
指導教授(外文):Liu, Chih-ChinWeng, Tien-Hsiung
口試委員:徐嘉連翁添雄劉志俊
口試委員(外文):Hsu, Jia-LienWeng, Tien-HsiungLiu, Chih-Chun
口試日期:2022-06-25
學位類別:碩士
校院名稱:靜宜大學
系所名稱:資訊應用與科技管理碩士在職專班
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:38
中文關鍵詞:深度學習生成對抗網路卷積神經網路人臉辨識人臉化妝人臉老化通緝犯人臉辨識
外文關鍵詞:deep learninggenerative adversarial networkconvolutional neural networkface recognitionface makeupface agingface recognition of wanted criminals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
台灣四面環海,所以海岸巡防一直是我國國家安全之根本。通緝犯及非法走私集團,經常由西部海岸地區潛逃或走私至中國大陸與港澳地區。根據法務部調查局所提供的通緝犯影像,影像通常往往為舊照片且有時模糊不清,而通緝犯潛逃時經常會化妝與變裝,導致執法人員在人工辨識與查緝通緝犯人臉時有執勤上的困難。本文提出透過生成對抗網路與卷積網路技術,發展合成老化人臉與人臉辨識方法來協助進行通緝犯人臉偵測與辨識,藉此提高海巡署同仁於各項進、出港檢查時,或是執行通緝犯專案查緝時的目標人臉辨識效能。希望未來能將本論文發展的技術結合至海巡署已建置之智慧型港區監視、營區監視、環島監視系統及無人機即時影像等系統。除了可以大幅縮短海巡署同仁核對進、出港民眾的檢查時間外,更可降低人工檢查的錯誤率,進而提升通緝犯的查緝成效,以維國門之安全。
This thesis aims to provide a face image recognition system for identifying wanted criminals through deep learning and image recognition technology, which can be used in entry and exit inspects or special investigations for the Marine Patrol Department. In the future, this technology is expected to be integrated with the intelligent port surveillance, camp surveillance, round-island surveillance system, and drone real-time imaging systems that have been built by the Marine Patrol Administration. In addition to significantly reducing the inspection time, it can also reduce the error rate of manual inspections, thereby improving the performance of identifying wanted criminals and safeguarding the security of the country.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
圖目錄 vi
表目錄 vii
第一章 緒論 1
第二章 相關研究 6
2.1 人臉老化相關之研究 6
2.2 人臉識別增強方法相關之研究 8
第三章 研究方法 10
3.1 卷積神經網路模型-LeNet 10
3.2 卷積網路模型-ResNet 13
3.3 卷積網路模型-MoibleNet 14
3.4 物件偵測模型-YOLO 14
3.5 人臉辨識經典模型-Haar Cascade Detector 16
3.6 人臉辨識模型-FaceNet 17
第四章 系統架構 19
第五章 實驗 24
5.1 實驗環境設定 24
5.2 實驗資料集與物件辨識指標 24
5.3 實驗結果 27
第六章 結論 34
參考文獻 35
阮文杰, "兩岸海上偷渡問題之探討," 2008.
蘇漢霖, "兩岸海上犯罪現況與問題探討," 2008.
劉育偉, "海峽兩岸跨境犯罪之分析," 海軍學術雙月刊, vol. 43, no. 1, pp. 18-28, 2009.
W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, "Face recognition: A literature survey," ACM computing surveys (CSUR), vol. 35, no. 4, pp. 399-458, 2003.
I. Masi, Y. Wu, T. Hassner, and P. Natarajan, "Deep face recognition: A survey," in 2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), 2018, pp. 471-478: IEEE.
Y. Kortli, M. Jridi, A. Al Falou, and M. Atri, "Face recognition systems: A survey," Sensors, vol. 20, no. 2, p. 342, 2020.
M. Sharif, F. Naz, M. Yasmin, M. A. Shahid, and A. Rehman, "Face Recognition: A Survey," Journal of Engineering Science & Technology Review, vol. 10, no. 2, 2017.
M. Wang and W. Deng, "Deep face recognition: A survey," Neurocomputing, vol. 429, pp. 215-244, 2021.
A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 2001, pp. 327-340.
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125-1134.
Z. Zhang, Y. Song, and H. Qi, "Age progression/regression by conditional adversarial autoencoder," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5810-5818.
I. Kemelmacher-Shlizerman, S. Suwajanakorn, and S. M. Seitz, "Illumination-aware age progression," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 3334-3341.
G. Antipov, M. Baccouche, and J.-L. Dugelay, "Face aging with conditional generative adversarial networks," in 2017 IEEE international conference on image processing (ICIP), 2017, pp. 2089-2093: IEEE.
G. Antipov, M. Baccouche, S.-A. Berrani, and J.-L. Dugelay, "Apparent age estimation from face images combining general and children-specialized deep learning models," in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2016, pp. 96-104.
B. Amos, B. Ludwiczuk, and M. Satyanarayanan, "Openface: A general-purpose face recognition library with mobile applications," CMU School of Computer Science, vol. 6, no. 2, p. 20, 2016.
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2223-2232.
S. Palsson, E. Agustsson, R. Timofte, and L. Van Gool, "Generative adversarial style transfer networks for face aging," in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2018, pp. 2084-2092.
Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep learning face attributes in the wild," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 3730-3738.
W. Wang et al., "Recurrent face aging," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2378-2386.
X. Shu, J. Tang, H. Lai, L. Liu, and S. Yan, "Personalized age progression with aging dictionary," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 3970-3978.
Arsenovic, M., Sladojevic, S., Anderla, A., & Stefanovic, D. (2017, September). FaceTime—Deep learning based face recognition attendance system. In 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) (pp. 000053-000058). IEEE.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
A. G. Howard et al., "Mobilenets: Efficient convolutional neural networks for mobile vision applications," arXiv preprint arXiv:1704.04861, 2017.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788.
P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, 2001, vol. 1, pp. I-I: Ieee.
F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face recognition and clustering," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 815-823.
D. Qi, W. Tan, Q. Yao, and J. Liu, "YOLO5Face: why reinventing a face detector," arXiv preprint arXiv:2105.12931, 2021.
B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable architectures for scalable image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710.
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated residual transformations for deep neural networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492-1500.
J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132-7141.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700-4708.
M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," in International conference on machine learning, 2019, pp. 6105-6114: PMLR.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊