跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/20 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林湧翔
研究生(外文):LIN, YUNG-HSIANG
論文名稱:應用智庫推特資料探討「訊息流行病」之輿情傳播:以新冠疫情為例
論文名稱(外文):Study on Public Opinion Dissemination of “ Infodemic ”using the Twitter Data of Think Tanks:An Example of COVID-19
指導教授:江信昱江信昱引用關係
指導教授(外文):CHIANG, HSIN-YU
口試委員:莊道明徐暄淯
口試日期:2022-07-28
學位類別:碩士
校院名稱:世新大學
系所名稱:資訊傳播學研究所(含碩專班)
學門:傳播學門
學類:一般大眾傳播學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:111
中文關鍵詞:智庫新冠疫情訊息流行病推特輿情傳播反疫苗運動
外文關鍵詞:Think TankCOVID-19InfodemicTwitterPublic Opinion DisseminationAnti-Vax Movement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在新媒體時代,社群平台成為全球公共輿論的聚集地,也成為全球重大事件輿論的放大鏡。新冠疫情發生後,COVID-19產生的訊息流行病已逐漸傳播於各大社群平台,智庫作為思想傳播者,尤其是在逐漸靠近社群媒體的情形下,也開始向政府與公眾提出示警。基於此研究背景,本研究試圖探討新冠疫情期間,專業智庫如何形塑新冠疫情之論述。對此,本研究蒐集2020年1月至2022年4月12日全球前五十大頂尖智庫的社群文本資料,共篩選出15,272筆與COVID-19相關的智庫推文資料,採取語料庫分析之研究取徑,分析頂尖智庫在新冠疫情相關推文的語言運用特徵,並以訊息流行病中的反疫苗運動(The anti-vax Movement)事件為例,爬梳頂尖智庫如何形成傳播話語。研究結果顯示:(1)頂尖智庫提及新冠疫情之推文數量僅佔整體資料的11%,顯示頂尖智庫在特定議題傳播的謹慎以對;(2)有別於新冠疫情對政經社會的常見影響,頂尖智庫更呼籲重視新冠疫情對氣候變遷的潛在危機;(3)頂尖智庫對新冠疫情造成的經濟與人權議題回應頻繁,且會強化議題的主題連帶關係使其獲得更多關注;(4)頂尖智庫約有四成的新冠疫情推文情緒呈現負面情緒,且遇到首支疫苗緊急核准與再現新病毒株時,其智庫推文的負面情緒也會逐漸增加;(5)在疫苗緊急核准與發表疫苗猶豫報告的二個案例發生前後,頂尖智庫與新聞報導對反疫苗運動的話語切入點不同。最後,本研究提供一些建議,像是擴大疫情社群文本資料集,較能完整分析疫情輿論的動態演變,擴大訊息流行病的其他實例,結合領域專家訪談,強化反疫苗運動的結果詮釋與事件發展的背後脈絡及後續研究建議之參考。
In the era of new media, social media have become a gathering place for global public opinion and a magnifying glass for public opinion on major global events. After the outbreak of COVID-19, which the information epidemic caused by COVID-19 had gradually spread to any social media. On the other hand, think tanks, as political idea disseminators, had also begun to warn the government and the public. Based on this research background, this study attempts to explore how professional think tanks shape the discourse of the COVID-19 during the COVID-19 pandemic. Therefore, this study collected social media text from the world's top 50 think tanks from January 2020 to April 12, 2022, and screened a total of 15,272 think tank tweets related to COVID-19. And then, we took the research approach of corpus analysis to analyze the language usage characteristics of top think tanks in the tweets related to the COVID-19, finally which took the anti-vax movement as an example, to sort out the top think tanks' discourse. The results of the study are following: (1) The number of tweets of think tanks mentioning the COVID-19 only accounted for 11% of the overall data, indicating that think tanks are cautious in disseminating specific issues; (2) think tanks call for attention to the potential crisis of COVID-19 on climate change; (3) Think tanks frequently respond to economic and human rights issues caused by the COVID-19, and will strengthen the topic linkages of the issues to gain more attention; (4) About 40% of think tanks’ tweets about COVID-19 showed negative emotions, and when the important events had happened, the negative emotions of think tanks’ tweets were gradually increase; (5) Before and after upon the emergency approval of vaccines and the publication of vaccine hesitancy reports, top think tanks and news media had a different viewpoints on the anti-vaccine movement.
Finally, the study provides some suggestions, such as expanding the epidemic community textual data set, which can more completely analyze the dynamic evolution of public opinion, expanding other examples of information epidemics, combining the interviews with domain experts, and strengthening the interpretation of context and mechanism behind the anti-vax movement.
謝誌 i
摘要 ii
Abstract iii
目次 iv
表次 v
圖次 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 8
第三節 研究範圍與限制 9
第四節 名詞解釋 10
第二章 文獻探討 12
第一節 智庫及其資訊傳播 12
第二節 社群媒體中的訊息流行病研究 20
第三節 輿情傳播及其分析方法 27
第三章 研究方法 32
第一節 研究流程與架構 32
第二節 研究對象 36
第三節 研究方法 42
第四節 研究工具與資料分析 43
第四章 研究結果分析 44
第一節、頂尖智庫針對新冠疫情相關議題發文之樣態 45
第二節、頂尖智庫針對新冠疫情相關推文之情緒分析 64
第三節、頂尖智庫與新聞媒體針對反疫苗運動之論述 83
第五章 結論與建議 91
第一節、研究結論 91
第二節、未來研究建議 94
參考文獻 95
中文文獻
BBC(2020年5月31日)。特朗普宣佈美國退出世衛組織 受到國內外廣泛批評。上網時間:2022年1月20日,取自https://www.bbc.com/zhongwen/simp/world-52866820
BBC(2022年1月29日)。疫苗史話:抵制疫苗接種的運動如何影響歷史進程。上網時間:2022年1月22日,取自https://www.bbc.com/zhongwen/trad/science-60067344
丁芃、鄧向陽(2015)。從 “朱令案” 探析中國網絡輿論的特徵變化。國際新聞界,37(1),144-156。
丁柏銓(2007)。略論輿情——兼及它與輿論,新聞的關係。新聞記者,6,8-11。
王世偉(2020)。略論 “信息疫情” 十大特徵。圖書館雜誌,39(3),19。
王來華、林竹、畢宏音(2004)。對輿情,民意和輿論三概念異同的初步辨析。新視野,5,64-66。
王莉麗(2014)。論美國智庫輿論影響力的形成機制。國外社會科學,3,51-55。
王莉麗(2018)。中國媒體智庫的定位與發展路徑。新聞戰線,2,39-41。
江信昱(2021年10月)。基於Twitter的頂尖國安智庫之社群內容探析及其對外傳播的啟示。第15屆軍事新聞學術研討會(頁29-68),國防大學,台北市。
江信昱、林湧翔(2022年4月)。新聞媒體為何需要融合智庫?-初探「媒體型智庫」之定位與傳播功能。第10屆「新聞的政治、文化與科技」學術研討會,世新大學,台北市。
吳定(2003)。政策管理 (Vol. 1)。聯經出版。
吳亮、夏宇、馬岩(2016)。媒體融合發展對接中國特色新型智庫建設的路徑研究。中國科學院院刊,31(8),879-887。
李永展(2022)。當病毒與氣候變遷聯手,人類可以做什麼?天下雜誌。上網時間:2022年4月10日,取自https://opinion.cw.com.tw/blog/profile/255/article/12055
李宜穆(2012年3月18日)。看冰島如何用社群媒體重建國家經濟。數位時代。上網時間:2022年1月20日,取自 https://www.bnext.com.tw/article/22466/BN-ARTICLE-22466
李剛(2018)。主流媒體的智庫化及其實現路徑。新聞戰線,2,42-44。
周敏、王瑩(2010)。從地方網絡論壇輿情生成看網絡問政的新模式。現代傳播:中國傳媒大學學報,7,119-122。
林照真(2020)。假新聞類型與媒體聚合:以2018年臺灣選舉為例。新聞學研究,142,111-153。
法新社(2021年8月25日)。研究:疫苗接種速度緩慢打擊全球經濟開發中國家首當其衝。中央廣播電臺。上網時間:2022年3月18日,取自 https://www.rti.org.tw/news/view/id/2109408
社團法人臺灣網路資訊中心(2020)。2020年臺灣網路報告。社團法人臺灣網路資訊中心。上網時間:2022年2月3日,取自https://report.twnic.tw/2020/TrendAnalysis_globalCompetitiveness.html
施伯燁(2014)。社群媒體-使用者研究之概念,方法與方法論初探。傳播研究與實踐,4(2),207-227。
施琮仁(2021)。新冠肺炎的日常防疫行為:媒體、情緒與風險認知的作用。新聞學研究,148,153-196。
紀慧君(2018)。從語料分析探究有機食物之媒體再現:三十年之意義與轉變。中華傳播學刊,34,209-252。
胡元輝(2022)。假訊息:當代傳播與民主的挑戰。王維菁、林玉鵬、王俐容(主編),AI時代的數位傳播素養教育(頁119-138)。五南。
胡泳、陳秋心(2017)。輿情:本土概念與本土實踐。傳播與社會學刊,40,33-74。
胡泳.(2020)。信息流行病的傳播機理-兼論新冠疫情下的後真相政治。二十一世紀,182,4-20。
唐濤(2020)。當前全球智庫發展特點以及對中國的啟示。情報資料工作,41(5),37-41。
孫維三(2022)。病毒、資訊與社會:以 Luhmann 的社會系統理論觀察訊息疫情,165-166。
張元龍(2009)。關於“輿情”及相關概念的界定與辨析。浙江學刊,3(183),5。
張方毓編譯(2021年6月12日)。8個月就問世!新冠疫苗「超速研發」是怎麼做到的?商業周刊。上網時間:2022年3月30日,取自https://www.businessweekly.com.tw/international/blog/3006809
曹開明、黃鈴媚、劉大華(2017)。數位語藝批評與文本探勘工具-以反核臉書粉絲團形塑幻想主題為例。資訊社會研究,32,9-49。
郭文平(2015)。字彙實踐及媒介再現:語料庫分析方法在總體經濟新聞文本分析運用研究。新聞學研究,125,95 - 142。
郭文平(2017)。緩慢開展的危害再現:媒介報導中的旱災,風險及氣候變遷論述之語料分析。傳播研究與實踐,7(1),37-70。
郭文平(2020)。語料庫輔助的媒體論述分析:以臺灣平面媒體中國夢報導為語料的實證研究。資訊社會研究,38,51-92。
閆慧、劉暢、張鵬翼、裴雷、黃崑、王琳、吳丹(2021)。信息疫情:信息科學家的觀點與對策。圖書情報知識,38(1),136-143。
陳世榮(2015)。社會科學研究中的文字探勘應用:以文意為基礎的文件分類及其問題。人文及社會科學集刊,27(4),683-718。
陳柏宏、孫懋嘉(2021年10月)。從政治系統理論視角探析中共武嚇期間的涉軍網路輿情。第15屆軍事新聞學術研討會(頁139-192)。國防大學,台北市。
陳婉琪、張恒豪、黃樹仁(2016)。網絡社會運動時代的來臨?太陽花運動參與者的人際連帶與社群媒體因素初探。人文及社會科學集刊,28(4),467-501。
陶治中、簡睿志、李恒綺、楊大輝、楊明德、巫妮蓉(2016)。三元決策理論應用於社群媒體挖掘之情感分析-以UBER在臺營運話題為例。運輸計劃季刊,45(4),301-330。
傅文成(2020)。以語料庫分析方法檢驗新南向政策的政府與媒體風險建構策略。中華傳播學刊,37,189-226。
喻國明、李彪(2010)。 2009年上半年中國輿情報告(下)—基於第三代網絡搜索技術的輿情研究。山西大學學報:哲學社會科學版,33(2),124-130。
喻國明、李慧娟(2014)。大數據時代傳播研究中語料庫分析方法的價值。傳媒,2,64-66。
項靖、羅晉、許雲翔、楊東謀、蘭韻綺、葉明坤、徐慧莉、黃郁尹、黎毓婷、江汶錡(2017)。網路社群媒體時代政府公共諮詢與政策行銷之規劃(編號:NDC-104-035-002)。臺北市:國家發展委員會。
楊亨利、林青峰(2017)。微網誌短句的情感指數分析-以新浪微博為例。Management,24(1),1-28。
楊錦生、謝佩芸、施曉萍(2017)。社群媒體中顧客知識之挖掘:意見探勘技術開發。臺大管理論叢,27(2S),1-28。
趙雅文、宋慶功、李煒娜(2011)。把握輿情轉化臨界點講求輿論引導藝術性—物質相變規律對輿論引導的借鑒與啟示。新聞大學,3,136-141。
劉時君、蘇蘅(2017)。政治抗議事件中媒體的創新使用與實踐: 以太陽花運動為例。資訊社會研究,33,147-188。
鄭宇君、陳百齡(2017)。香港雨傘運動的眾聲喧嘩:探討Twitter社群的多語系貼文。傳播與社會學刊,41,81-117。
鄭凱元(2020年5月30日)。【即時】川普宣布「今天就退出世衛」──然而世衛組織真能說退就退嗎?換日線。上網時間:2022年3月13日,取自https://crossing.cw.com.tw/article/13471
魯炳炎(2007)。政策行銷理論意涵之研究。中國行政,78,31-53。
盧安邦、鄭宇君(2017)。用方法說故事:探析電腦輔助文本分析工具在框架研究之應用。傳播研究與實踐,7(2),145-178。
羅世宏(2018)。關於假新聞的批判思考:老問題,新挑戰與可能的多重解方。資訊社會研究,35,51-86。
衛福部疾病管制署(2020年4月27日)。第五類法定傳染病-嚴重特殊傳染性肺炎疾病介紹。上網時間:2022年4月15日,取自https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A



英文文獻
Abelson, D., Brooks, S., & Hua, X. (2016). Think Tanks, Foreign Policy and Geo-Politics - Pathways to Influence. Routledge.
Anstead, N., & Chadwick, A. (2018). A primary definer online: the construction and propagation of a think tank’s authority on social media. Media, Culture & Society, 40(2), 246-266.
Auvinen, A. M. (2012). Social media–the new power of political influence. Center for European Studies.
Baker, P., & Ellece, S. (2011). Key terms in discourse analysis. A&C Black.
Benjamin, P. (2021, January 12). Covid-19 infodemic: communicate the facts as if your life depended on it. Daily Maverick. Retrieved April 20, 2022, from https://www.dailymaverick.co.za/article/2021-01-12-covid-19-infodemic-communicate-the-facts-as-if-your-life-depended-on-it/
Bevitori, C. (2010). Representations of climate change: news and opinion discourse in UK and US quality press; a corpus-assisted discourse study. Bononia University Press.
Bhattacharya, B., & Basu, P. (1998). Mapping a research area at the micro level using co-word analysis. Scientometrics, 43(3), 359–372. https://doi.org/10.1007/bf02457404
Bonta, V., Kumaresh, N., & Janardhan, N. (2019). A Comprehensive Study on Lexicon Based Approaches for Sentiment Analysis. Asian Journal of Computer Science and Technology, 8(S2), 1-6.
Butler, D., & Eilperin, J. (2020). The Anti-Greta: A Conservative Think Tank Takes on the Global Phenomenon. The Washington Post, 24, A1.
Carl, M. L. (2005). Think Tank Agenda Setting: The Influence of the Council on Foreign Relations on Elections, the New Administration's Transition Agenda, and Beyond. A Case Study. AIR COMMAND AND STAFF COLL MAXWELL AFB AL.
Coleman, A. (2020, August 12). ‘Hundreds dead’ because of Covid-19 misinformation. BBC News. Retrieved March 17, 2022, from https://www.bbc.co.uk/news/world-53755067
Colnerič, N., & Demšar, J. (2018). Emotion Recognition on Twitter: Comparative Study and Training a Unison Model. IEEE Transactions on Affective Computing, 11(3), 433-446.
Corley (2021, May 25). Black Lives Matter Fights Disinformation To Keep The Movement Strong. npr. Retrieved March 14, 2022, from https://www.npr.org/2021/05/25/999841030/black-lives-matter-fights-disinformation-to-keep-the-movement-strong
Crocamo, C., Viviani, M., Famiglini, F., Bartoli, F., Pasi, G., & Carrà, G. (2021). Surveilling COVID-19 Emotional Contagion on Twitter by Sentiment Analysis. European Psychiatry, 64(1), e17. https://doi.org/10.1192/j.eurpsy.2021.3
DataReportal. (2021, JAN 27). Digital 2021: Global Overview Report. Retrieved February 14, 2022, from https://datareportal.com/reports/digital-2021-global-overview-report
Demšar, J., Zupan, B., Leban, G., & Curk, T. (2004, September). Orange: From experimental machine learning to interactive data mining. In European conference on principles of data mining and knowledge discovery (pp. 537-539). Springer, Berlin, Heidelberg.
Dias, R. (2020, February 23). Um país em pânico duplo. Folha de São Paulo. Folha de S.Paulo. Retrieved February 20, 2022, from https://www1.folha.uol.com.br/colunas/robertodias/2020/02/um-pais-em-panico-duplo.shtml
Dubé, E., & MacDonald, N. E. (2022). COVID-19 vaccine hesitancy. Nature Reviews Nephrology, 18, 409–410. https://doi.org/10.1038/s41581-022-00571-2
Dubé, E., Ward, J. K., Verger, P., & MacDonald, N. E. (2021). Vaccine Hesitancy, Acceptance, and Anti-Vaccination: Trends and Future Prospects for Public Health. Annual Review of Public Health, 42, 175–191. https://doi.org/10.1146/annurev-publhealth-090419-102240
Eysenbach, G. (2020). How to fight an infodemic: the four pillars of infodemic management. Journal of medical Internet research, 22(6), e21820.
Goodman, J. C. (2005). What is a think tank. National Center for Policy Analysis, 2.
Hollowood, E. & Mostrous, A. (2020, March 23). Fake news in the time of C-19. Tortoise . Retrieved March 25, 2022, from https://members.tortoisemedia.com/2020/03/23/the-infodemic-fake-news-coronavirus/content.html
Hunston, S. (2022). Corpora in applied linguistics. Cambridge University Press.
Hutto, C., & Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 216-225. Retrieved from https://ojs.aaai.org/index.php/ICWSM/article/view/14550
Hyland, K. (2009). Academic Discourse: English in a Global Context. London: Continuum.
Kaiser, B. (2019). Targeted: My inside story of Cambridge Analytica and how Trump, Brexit and Facebook broke democracy. HarperCollins.
Koerner, B. (2016, April). WHYISIS IS WINNING THE SOCIAL MEDIA WAR. WIRED. Retrieved April 3, 2022, from https://www.wired.com/2016/03/isis-winning-social-media-war-heres-beat/
Kumar, A. (2021). What changed and what didn’t in one year of a pandemic and lockdown. The Wire. Retrieved April 10, 2022, from https://thewire.in/economy/what-changed-what-didnt-one- year-covid-pandemic-lockdown-india
Kuntz, F. (2013, July 11). Communications and Impact Metrics for Think Tanks. CIGI. Retrieved February 14, 2022, from https://www.cigionline.org/articles/communications-and-impact-metrics-think-tanks/
Lamsal, R. (2021). Design and analysis of a large-scale COVID-19 tweets dataset. Applied Intelligence, 51(5), 2790-2804.
Lamsal, R., Harwood, A., & Read, M. R. (2022). Socially Enhanced Situation Awareness from Microblogs using Artificial Intelligence: A Survey. ACM Computing Surveys. https://doi.org/10.1145/3524498
Ledford, H., Cyranoski, D., & van Noorden, R. (2020). The UK has approved a COVID vaccine — here’s what scientists now want to know. Nature, 588, 205-206. https://doi.org/10.1038/d41586-020-03441-8
McEnery, T., & Hardie, A. (2011). Corpus linguistics: Method, theory and practice. Cambridge University Press.
McGann, J. G. (2007). Think tanks and policy advice in the US: academics, advisors and advocates. Routledge.
McGann, J. G. (2016). The fifth estate: think tanks, public policy, and governance. Brookings Institution Press.
McGann, J. G. (2020). 2019 Global Go To Think Tank Index Report.
McGann, J. G., & Johnson, E. C. (2005). Comparative think tanks, politics and public policy. Edward Elgar Publishing.
McGregor, S. C. (2019). Social media as public opinion: How journalists use social media to represent public opinion. Journalism, 20(8), 1070-1086.
McKenzie, S., & Fox, K. (2019, February 16). Science being 'debunked:' Why are some countries making a vaccine U-turn?. CNN. Retrieved February 5, 2022, from https://edition.cnn.com/2019/02/16/health/anti-vaccine-movement-history-pushback-intl/index.html
McNair, B. (2009). Journalism and Democracy. In K. Wahl-Jorgensen & T. Hanitzsch (Eds.), The Handbook of Journalism Studies (pp. 237–249). Routledge.
Menegazzi, S. (2021). Chinese think tanks and public diplomacy in the Xi Jinping era. Global Society, 35(3), 373-394.
Pentland, A. (2015). Social Physics: How social networks can make us smarter. Penguin.
Pollák, F., & Soviar, J., & Vavrek, R., (Eds.). (2022). Communication Management. IntechOpen. https://doi.org/10.5772/intechopen.94775
Puri, N., Coomes, E. A., Haghbayan, H., & Gunaratne, K. (2020). Social media and vaccine hesitancy: new updates for the era of COVID-19 and globalized infectious diseases. Human Vaccines & Immunotherapeutics, 16(11), 2586-2593.
Raballo, A., Poletti, M., & Preti, A. (2022). Vaccine Hesitancy, Anti-Vax, COVID-Conspirationism: From Subcultural Convergence to Public Health and Bioethical Problems. Frontiers in public health, 10, 877490. https://doi.org/10.3389/fpubh.2022.877490
Rashid, A. K. (2013). The dynamics of relationship between media and think tanks in Bangladesh. Asia Pacific Media Educator, 23(1), 175-196.
Roberts, M. (2019, June 19). Vaccines: Low trust in vaccination 'a global crisis'. BBC News, Retrieved January 14, 2022, from https://www.bbc.com/news/health-48512923
Rothkopf, D. J. (2003). When the Buzz Bites Back. The Washington Post. https://www.washingtonpost.com/archive/opinions/2003/05/11/when-the-buzz-bites-back/bc8cd84f-cab6-4648-bf58-0277261af6cd/
Rubin, H., & Saidel, N. (2021). Innovation beyond patent waivers: Achieving global vaccination goals through public-private partnerships. Brookings. Retrieved May 14, 2022, from https://www.brookings.edu/blog/up-front/2021/08/31/innovation-beyond-patent-waivers-achieving-global-vaccination-goals-through-public-private-partnerships/
Sharma, K., Zhang, Y., & Liu, Y. (2022). COVID-19 Vaccine Misinformation Campaigns and Social Media Narratives. Proceedings of the International AAAI Conference on Web and Social Media, 16(1), 920-931.
Stone, D. (2004). Transfer agents and global networks in the ‘transnationalization’ of policy. Journal of European Public Policy, 11(3), 545–566. https://doi.org/10.1080/13501760410001694291
Wardle, C. (2017). Information disorder: Toward an interdisciplinary framework for research and policy making (2017)
WHO. (2020, Feb.15). Munich Security Conference. WHO. Retrieved March 21, 2022, from https://www.who.int/director-general/speeches/detail/munich-security-conference
WHO.(n.d.). Infodemic. WHO. Retrieved January 7, 2022, from https://www.who.int/health-topics/infodemic#tab=tab_1
WHO. (2020, Feb.11). Coronavirus disease (COVID-19). WHO. Retrieved July 10, 2022, from https://www.who.int/health-topics/coronavirus#tab=tab_1
Wicke, P., & Bolognesi, M. M. (2021). Covid-19 Discourse on Twitter: How the Topics, Sentiments, Subjectivity, and Figurative Frames Changed Over Time. Frontiers in Communication, 6. https://doi.org/10.3389/fcomm.2021.651997
Zubiaga, A., Liakata, M., & Procter, R. (2016). Learning reporting dynamics during breaking news for rumour detection in social media. arXiv preprint arXiv:1610.07363.
電子全文 電子全文(網際網路公開日期:20241231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top