跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱述詮
研究生(外文):QIU,SHU-QUAN
論文名稱:光雙折感測器應用於光譜量測液體揮發
論文名稱(外文):Optical birefringence sensor applied to spectral measurement of liquid volatilization
指導教授:涂瑞清
指導教授(外文):TWU,RUEY-CHING
口試委員:莊文魁鄭永楨
口試委員(外文):CHUANG,WEN-KUEICHENG,YUNG-CHEN
口試日期:2022-06-22
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:95
中文關鍵詞:光雙折材料液體揮發極化干涉架構光譜分析儀
外文關鍵詞:optical birefringence materialsliquid volatilizationpolarization interference architecturespectrum analyzer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,研製了一雙折感測器,應用共路徑極化干涉方法,作為揮發性液體動態量測之開發與應用。在感測盒的設計上,主要是以顯示器產業常用之偏振片,將其黏貼在長方體壓克力盒且入射光會行經的兩個面來作為我們的極化干涉架構。在光雙折材料的選擇上,是以軟性雙折材料PEN及PET為主,並將PEN及PET以垂直向下之方式黏合表面塗有UV膠之蓋玻片,再放入長方體壓克力盒中並注入介質液體。最後將此壓克力感測盒至於一光譜量測系統,並以寬頻光源通過此感測盒之後以光譜分析儀接收訊號作為分析。

為使實驗數據得到最佳化的量測,針對實驗架構做出了不同的設計,例如偏振片的夾角、雙折材料的種類和感測器的固定入射角度等。在確定實驗架構後,依照介質液體的屬性,判斷該進行抽換量測或是揮發量測。由於正交極化入射光的相位變化與環境液體的折射率變動有關,而液體折射率又與濃度或成份有關,因此當注入液體具有不同濃度或是隨時間揮發的現象產生時,透過寬頻光源入射之不同波長具有不同的相位變化,同時利用光譜分析儀接收量測到的干涉強度光譜變化,可以作為量測液體揮發過程之動態監測裝置。

實驗結果顯示所量測的介質液體與文獻中描述的趨勢吻合,並進行反覆的實驗量測來驗證其重複性,雖然有時會受到環境的溫溼度影響造成些許誤差,但不影響我們對數據的解讀與探究。

In this dissertation, a birefringence sensor is developed and applied as a dynamic measurement of volatile liquids using the common-path polarization interference method. In the design of the sensor, the polarizing film commonly used in the display industry is mainly used as our polarization interference structure. In the selection of optical birefringent materials, the flexible birefringent materials PEN and PET are mainly used, and PEN and PET are glued to the cover glass with UV glue on the surface in a vertical downward manner, and they are placed in the acrylic box with the injection liquid to be tested. The acrylic sensing box is placed in a spectrum measurement system, and a wide-band light source passes through the sensing box, and then the spectrometer receives the signal for analysis.

In order to optimize the measurement of the experimental data, different designs were made for the experimental structure, such as the included angle of the polarizer, the type of birefringent material, and the fixed incident angle of the sensor. After determining the experimental structure, look at the properties of the medium liquid to determine whether to perform a swap measurement or an evaporation measurement. Since the phase change of the orthogonally polarized incident light is related to the change of the refractive index of the ambient liquid, and the refractive index of the liquid is related to the concentration or composition is related, so when the injected liquid has different concentrations or volatilization over time, the different wavelengths of the light source have different phase changes, and the spectrum analyzer is used to receive the measured interference intensity spectral changes, which can be as a dynamic monitoring arrangement for measuring the volatilization process of liquid.

The experimental results show that the measured medium liquid is consistent with the trend described in the literature, and repeated experimental measurements are carried out to verify the repeatability. Although there may be some errors caused by the temperature and humidity of the environment, it does not affect our interpretation and exploration of the data.

摘要……………………………………………………………I
Abstract………………………………………………………II
致謝……………………………………………………………IV
目錄……………………………………………………………V
表目錄…………………………………………………………VIII
圖目錄…………………………………………………………IX
第一章 緒論……………………………………………………1
1.1 研究背景……………………………………………………1
1.2 研究動機與目的……………………………………………2
第二章 文獻回顧………………………………………………4
2.1 多孔矽微腔量測乙醇揮發…………………………………5
2.2 法布立-佩羅干涉儀量測乙醇揮發…………………………6
2.3 法諾共振檢測乙醇溫度……………………………………7
2.4 雙模光纖量測液體熱光係數………………………………8
2.5 表面等離子共振量測介電常數之波長偏移………………9
2.6 聚合物微諧振傳感器量測氯化鈉溶液……………………10
2.7 近紅外光吸收法量測尿素水溶液濃度……………………11
2.8 多模光纖量測不同折射率之甘油…………………………12
第三章 基本原理與量測架構…………………………………13
3.1 雙折材料……………………………………………………13
3.2 聚萘二甲酸乙二醇酯(PEN)………………………………15
3.3 PEN的應用…………………………………………………16
3.3.1 石墨烯層壓至PEN基板上………………………………16
3.3.2 噴墨印刷法在PEN基板上製造有機薄膜晶體管………17
3.3.3 鋼聚合物實現摩擦電能收集……………………………18
3.4 聚對苯二甲酸乙二酯(PET)………………………………19
3.5 PET的應用…………………………………………………20
3.5.1 電化學剝離製作之GaN膜………………………………20
3.5.2 聚合物分散液晶製作之柔性光閥………………………21
3.5.3 鈣鈦礦雷射噴墨印刷法…………………………………22
3.6 極化干涉光譜量測原理……………………………………23
3.7 量測架構與雙折材料之選用………………………………25
3.7.1 極化干涉光譜量測架構…………………………………25
3.7.2 PEN加工固定……………………………………………26
3.7.3 長方體壓克力盒…………………………………………26
3.7.4 偏振片……………………………………………………27
3.7.5 雙折材料之選用…………………………………………30
3.7.6 PEN方向之選用…………………………………………31
3.7.7 PEN入射角度之選用……………………………………33
3.7.8 PEN厚度之選用…………………………………………39
3.7.9 寬頻光源及其他LED光源………………………………40
3.7.10 光譜分析儀……………………………………………43
第四章 實驗結果與討論………………………………………44
4.1 氯化鈉溶液…………………………………………………46
4.1.1 寬頻光源量測結果………………………………………46
4.1.2 白光LED量測結果………………………………………47
4.2 漂白水溶液…………………………………………………48
4.2.1 寬頻光源量測結果………………………………………48
4.3 葡萄糖溶液…………………………………………………49
4.3.1 寬頻光源量測結果………………………………………49
4.4 三種水質液體………………………………………………50
4.4.1 寬頻光源量測結果………………………………………50
4.5 甲醇溶液……………………………………………………52
4.5.1 寬頻光源量測結果………………………………………53
4.5.2 白光LED量測結果………………………………………54
4.5.3 藍光LED量測結果………………………………………55
4.5.4 紫外光LED量測結果……………………………………56
4.6 75%乙醇溶液………………………………………………57
4.6.1 寬頻光源量測結果………………………………………58
4.6.2 白光LED量測結果………………………………………65
4.6.3 藍光LED量測結果………………………………………67
4.6.4 紫外光LED量測結果……………………………………69
4.7 95%乙醇溶液………………………………………………70
4.7.1 寬頻光源量測結果………………………………………70
4.7.2 白光LED量測結果………………………………………76
4.7.3 藍光LED量測結果………………………………………77
4.7.4 紫外光LED量測結果……………………………………81
4.8 熱水液體……………………………………………………82
4.8.1 寬頻光源量測結果………………………………………82
4.9 模擬實驗結果之光譜………………………………………86
第五章 結論與展望……………………………………………91
5.1 結論…………………………………………………………91
5.2 展望…………………………………………………………92
第六章 參考文獻………………………………………………93

[1] P. Parixit, D. Heli, and C. Chandni, “Hand sanitizers as a preventive measure in COVID-19 pandemic, its characteristics, and harmful effects: a review,” J. Egypt. Public. Health. Assoc. 97, 6, 2022.
[2] S. Dustin, W. Taylor, M. Ryan, R. L. Benjamin, W. S Jr. Dennis, D. P. Matthew, L. R. Robert, and V. Walter, “A comparison of polymer substrates for photolithographic processing of flexible bioelectronics,” Biomed Microdevices.15, pp. 925-939, 2013.
[3] L. Ouchi, L. Nakai, M. Ono, and S. Kimura, “Features of fluorescence spectra of polyethylene 2,6-naphthalate films,” J. Appl. Polym. Sci., 105, pp. 114-121, 2007.
[4] M. R. J. Vivanco, G. García, R. Doti, J. Faubert and J. E. Lugo, “Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities,” IEEE Photon., North, pp. 1-2, 2019.
[5] C. L. Lee, Y. Lu, C. H. Chen, and C. T. Ma, “Microhole-pair hollow core fiber Fabry–Perot interferometer micromachining by a femtosecond laser,” Sens. Actuators A, vol. 302, p. 111798, 2020.
[6] J. Zhu and G. Jin, “Detecting the temperature of ethanol based on Fano resonance spectra obtained using a metal-insulator-metal waveguide with SiO2 branches,” Opt. Mater., Express 11, pp. 2787-2799, 2021.
[7] Y. H. Kim, S. J. Park, S.-W. Jeon, S. Ju, C.-S. Park, W.-T. Han, and B.H.Lee, “Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe,” Opt. Express 20, pp. 23744-23754, 2012.
[8] H. Petr, L. Milena, and C. Dalibor, “Phase sensitive measurement of the wavelength dependence of the complex permittivity of a thin gold film using surface plasmon resonance,” Opt. Mater., Express 9, pp. 992-1001, 2019.
[9] H. Wei, and S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photon., Technol. Lett., vol. 28, pp. 2819-2822, 2016.
[10] M. Lubnow, T. Dreier, C. Schulz, and T. Endres, “Simultaneous measurement of liquid-film thickness and solute concentration of aqueous solutions of two urea derivatives using NIR absorption,” Appl. Opt., vol. 60, pp. 10087-10093, 2021.
[11] S. Zhang, Z. Wang, M. Zhu, L. Li, S. Wang, S. Li, F. Peng, H. Niu, X. Li, S. Deng, T. Geng, W. Yang, and L. Yuan, “A compact refractive index sensor with high sensitivity based on multimode interference,” Sens. Actuators A, vol. 315, p. 112360, 2020.
[12] L. G. Serrano, J. Panda, T. Edvinsson, and M. V. Kamalakar, “Flexible transparent graphene laminates via direct lamination of graphene onto polyethylene naphthalate substrates,” Nanoscale. Adv., vol. 15, pp. 3156-3163, 2020.
[13] S. Singh, Y. Takeda, H. Matsui and S. Tokito, “Flexible PMOS Inverter and NOR Gate Using Inkjet-Printed Dual-Gate Organic Thin Film Transistors,” IEEE Electron. Device. Lett., vol. 41, pp. 409-412, 2020.
[14] E. Iseri and S. Mutlu, “Realization of triboelectric energy harvesters using steel-polymer microfabrication methods,” IEEE 30th International Conference on Micro Electro Mechanical Systems, pp. 817-820, 2017.
[15] S. M. Yang, S. Hong, and S. Y. Kim, “Optical, mechanical, and photoelastic anisotropy of biaxially stretched polyethylene terephthalate films studied using transmission ellipsometer equipped with strain camera and stress gauge,” J. Polym. Sci. Part B: Polym. Phys., vol. 57, pp. 152-160, 2019.
[16] J.-H. Kang, D. K. Jeong, and S.-W. Ryu, “Transparent, Flexible Piezoelectric Nanogenerator Based on GaN Membrane Using Electrochemical Lift-Off,” ACS Appl. Mater. Interfaces, vol. 9, pp. 10637-10642, 2017.
[17] C. C. Chiou, F. H. Hsu, S. Petrov, V. Marinova, H. Dikov,P. Vitanov ,D. Dimitrov, K. Y. Hsu, Y. H. Lin, and S. H. Lin , “Flexible light valves using polymer-dispersed liquid crystals and TiO2/Ag/TiO2 multilayers,” Opt. Express, vol. 27, pp. 16911-16921, 2019.
[18] F. Mathies, P. Brenner, G. H.-Sosa, I. A. Howard, U. W. Paetzold, and U. Lemmer, “Inkjet-printed perovskite distributed feedback lasers,” Opt. Express, vol. 26, pp. A144-A152, 2018.
[19] R. C. Twu, and C. S. Wang, “A Birefringent-Refraction Transducer for Measuring Angular Displacement Based on Heterodyne Interferometry,” Appl. Sci., vol. 6, 208, 2016.
[20] Y. R. Sun, “Development and Application of Non-Contact Type Optical Birefringence Sensing Head,” 南臺科技大學光電工程系研究所, 碩士論文, 2020.
[21] M. Marla, J. H. Max, N. Florian, O. Mohamed, and S. Achim, “Combination of Refractometry and Densimetry–A Promising Option for Fast Raw Methanol Analysis,” https://doi.org/10.1002/cite.202000058, 2020.
[22] E. Lapeira, M. M. Bou-Ali, J. A. Madariaga, and C. Santamaria, “Thermodiffusion Coefficients of Water/Ethanol Mixtures for Low Water Mass Fractions,” Microgravity. Sci and Technol, vol. 28, pp. 553–557, 2016.
[23] F. Sanaa, J. F. Palierne, M. Gharbia, “Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film,” Sens. Opt. Mater., vol. 57, pp. 193-201, 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top