跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Tunpisith Jeamsupakorn
研究生(外文):Tunpisith Jeamsupakorn
論文名稱:慢性踝關節不穩患者在不同行走速度下,下肢與足部關節運動學、關節動力學和時空參數比較及動作 策略探討
論文名稱(外文):Comparisons of movement strategy in the lower limb and foot kinematics, kinetics, and spatio-temporal parameters at different walking speeds in individuals with and without chronic ankle instability
指導教授:楊志鴻楊志鴻引用關係
指導教授(外文):Yang,Chich-Huang
口試委員:郭藍遠劉冠麟詹博翔
口試委員(外文):Guo,Lan-YuenLiu,Kuan-LinChan,Po-Hsiang
口試日期:2022-01-20
學位類別:碩士
校院名稱:慈濟大學
系所名稱:物理治療學系碩士班
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:229
中文關鍵詞:慢性踝關節不穩運動學動力學時空參數內側縱向足弓位移牛津模型
外文關鍵詞:chronic ankle instabilitykinematicskineticsspatio-temporal parametersoxford foot model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
背景:慢性踝關節不穩(CAI)是由踝關節反覆扭傷至少兩次扭傷的病史發展而來,造成踝關節有關節不穩的徵象。 CAI 機制通常發生在站立階段,當它有其外力、不正確的腳放置或在行走過程中快速停止時,會產生關節不穩的問題。患有 CAI 的人會存在生活品質下降,包括:身體活動、關節運動、關節位置感和行走等活動中的平衡控制下降。近來因研究技術的先進更新,我們利用多段足部模型 (MSFM),例如:帶有 Plug-in-Gait 的牛津足部模型,進行時空變量、足部運動、下肢運動學、下肢動力學和內側縱向足弓位移 (MLA) ,來解釋慢性踝關節不穩 (CAI) 在動態任務中可能的運動策略的變化,例如:平地行走(單次行走和連續性行走)。
目的:本論文研究主要目的為: 1)確認在健康和CAI組中單次和繼續行走時的可靠性;2)比較CAI 與健康參與者在平地行走期間以不同速度進行單次行走和連續性行走任務時的運動策略評估;3)CAI 患者在不同速度下採用的運動策略。
研究設計:觀察性研究設計(橫斷面研究)。
方法:本研究招募三十六位受試者,分別為 18 名參與者(9 男 9 女)經問卷確認有 CAI 作為實驗組和 18 名健康年齡和 BMI 匹配作為健康對照組,通過檢定力分析(G*power,Universität),確認參與者的人數。使用牛津足部模型 (OFM) 的嵌入式步態 (PiG)模組,來捕捉裸足條件下參與者的行走的時空參數、下肢關節運動學、動力學等特徵參數。我們以自定的步速、快速(140 bpm)和慢速(80 bpm)平地行走期間收集每組受試者的行走數據。
統計分析:使用獨立 t 檢驗,在各組的人體計測資料和時空參數之間進行比較,顯著性水平定義為 p 值 < 0.05。使用統計參數映射 (SPM SPM1D v.0.4 2017) 對行走時期中站立階段的下肢各關節運動學的所有參數、下肢動力學數據和足部內側縱弓 (MLA) 的位移進行比較,具有 p 值 < 0.05 處定義為顯著性水平。
結果:在單次步行中,和健康對照組相比之下,CAI 實驗組在三種步行速度下的踝關節內翻和內旋明顯地增加(P < 0.05)。增加後足倒置表現為明顯地在自選和慢速下呈現(P < 0.05)。對於關節力矩和力量的比較,所有三種步行速度下,CAI 組在足跟觸地期間顯示出增加的膝關節附加力矩和在中間站姿期間減少的膝關節內收力矩(P <0 .05)。在自選速度中,CAI 組在最終站立時膝關節離心收縮減少。在慢速下,CAI 患者的膝關節內旋力矩增加,但踝關節內旋力矩降低 (P < 0.05)。在連續步行中,與健康對照組相比,CAI 患者在所有三種步行速度下的踝關節和後足的內翻均有所增加(P < 0.05)。在快速速度中,CAI 在中間站立時增加了膝關節內旋(P < 0.05)。在慢速行走下,CAI 組顯示向上傾斜的減少。在關節力矩和功率方面,行走速度快的CAI組其髖外旋和膝內收力矩顯著增加(P < 0.05)。在自選速度中,CAI 組的踝關節背屈力矩降低,踝關節向心力增加。在慢速時,CAI組膝關節內旋力矩減小。CAI組在單次和連續行走中,自選速度期間,顯示時空變量其降低節奏(P = 0.018)、增加步頻(P = 0.012)、步幅時間(P = 0.019)和雙支撐時間(P = 0.023)。
結論:這項研究結果顯示患有踝關節不穩的個案表現出他們的動態活動適應改變,這可能是導致再次受傷復發率的潛在先兆。不同的步行速度和任務速度代表了CAI的動態活動方式的改變。因此,當我們想將治療應用於患有 CAI 的個案時,我們應考慮為他們設計特定的任務,而步行速度可以是我們進行臨床介入或研究分析時必需考慮的標準之一。
關鍵詞:慢性踝關節不穩;運動學;動力學;時空參數;內側縱向足弓位移;牛津模型

Background: Chronic ankle instability (CAI) was developed from recurrent ankle sprains at least two sprains on the same side, and the ankle had the sign of giving way. CAI mechanism usually occurs during the stance phase when it had other force, incorrect foot placement, or rapid stop during walking. Individuals with CAI have a reduced quality of life, which may consist of decreased physical activity, joint movement, joint position sense, and balance control in activities such as walking. Recently advanced update in technology, we used multi-segment foot models (MSFM) such as Oxford Foot Model with Plug-in-Gait to provide the foot movement, lower limb kinetic, kinematic, spatio-temporal variables, and displacement in the medial longitudinal arch (MLA) to explain the movement strategy of CAI during dynamic tasks.
Purpose: This thesis study was aimed to 1) identify movement strategy of CAI when compared to healthy participants during level-walking with single and continue walking task at different speeds 2) investigate the movement strategy employed by patients with CAI at varying speeds 3) examine the reliability during single and continue walking in healthy and CAI group
Design: Observational study design (cross-sectional study).
Methods: 18 individuals (9 males and 9 females) with CAI as the experimental group (CAI) and 18 healthy age and BMI matched as the healthy control group were recruited for this study, as determined by a power analysis (G*power, Universität Düsseldorf). The Plug-in-Gait (PiG) with the Oxford Foot Model (OFM) was used to capture lower limb extremity kinematics in participants in barefoot conditions. We have collected the data in each group during level-walking at a self-paced speed, fast speed (140 bpm), and slow speed (80 bpm).
Statistical analysis: Comparisons were made between groups in the baseline of each group and spatio-temporal parameters using independent t-tests (SPSS v17, IBM Corp., Armonk, USA), with a significance level defined at a p-value ≤ 0.05. All parameters during the stance phase of joint kinematics, kinetics data on the lower limb, and displacement of the medial longitudinal arch (MLA) will be compared by using Statistical Parametric Mapping (SPM), SPM1D v.0.4 package for Matlab 2017, with a significance level defined at p-value ≤ 0.05
Results: In single walking, when compared with healthy control groups, individuals with CAI has demonstrated an increase in ankle inversion and internal rotation during three walking speeds (P<0.05). Increase hindfoot inversion was shown in self-selected and slow speed (P<0.05). For the joint moment and power, the CAI group showed an increased knee addition moment during heel strike and decreased knee adduction moment during mid-stance for all three walking speeds (P<0.05). In self-selected speed, the CAI group showed decreased knee eccentric contraction during terminal stance. In slow speed, increased internal rotation knee moment but decreased internal rotation ankle moment (P<0.05) was shown in individuals with CAI. In continuous walking when compared with healthy control groups, individuals with CAI was demonstrated an increase in the ankle and hind-foot inversion at all three walking speeds (P<0.05). In fast speed, CAI was increased knee internal rotation during mid-stance (P<0.05). In slow speed, a decrease in upward tilt is shown in the CAI group. In joint moment and power, the CAI group with fast walking speed showed increased hip external rotation and knee adduction moment (P<0.05). In self-selected speed, decreased ankle dorsiflexion moment and increased ankle concentric power was shown in the CAI group. In slow speed, the CAI group was decreased knee internal rotation moment. Spatio-temporal variables decrease cadence (P=0.018), increase step time (P=0.012), stride time (P=0.019), and double support time (P=0.023) were shown in the CAI group in both single and continue walking during self-selected speed. Another parameter on joint kinematic, joint kinetic, and spatio-temporal variables didn’t have differences between groups.
Conclusion: This study shows that individuals with CAI demonstrated their movement adaptation which is a potential precursor to contribute to the recurrence rate of re-injury. The different speeds of walking and task represent the movement of CAI didn’t the same. So when we want to apply the treatment to individuals with CAI, we must design the specific task for them. And walking speed can be one of the criteria that we must consider when we conduct research
Keywords: chronic ankle instability; kinematics; kinetics; spatio-temporal parameters; oxford foot model

Table of Contents
Acknowledgment…………………………………………………………………….I

中文摘要...................................................................................................................II

Abstract .....................................................................................................................IV

Table of Contents ......................................................................................................VI

Lists of figures ..........................................................................................................VII

Lists of tables …...........................................................................................................X

Lists of Abbreviation……………………………………………………………..XIII

Chapter 1 Introduction................................................................................................1

Chapter 2 Literature review .......................................................................................3

2.1 Ankle & foot structure and biomechanics................................................................3

2.2 Ankle Injury.............................................................................................................9

2.3 The foot core system..............................................................................................13

2.4 Overview of Multi-segmental Foot Model (MSFM).............................................14

2.5 Gait.........................................................................................................................16

2.6 Ankle and foot during gait......................................................................................20

2.7 Gait measurement parameter...................................................................................22
2.8 The effect of the CAI on joint kinematic, joint kinetic and spatio-temporal data…………………………………………………………………………………...24
2.9 Study hypothesis………………………………………………………………….48
2.10 Pilot study……………………………………………………………………….49
Chapter 3 Methodology ............................................................................................71

3.1 Ethical Consideration ............................................................................................71

3.2 Participants ............................................................................................................71

3.3 Instrumentation ......................................................................................................72

3.4 Marker setting.........................................................................................................73

3.5 Sample size estimation…………………………………………………………...74

3.6 Data collection........................................................................................................74

3.7 Preparation of data collection..................................................................................74
3.8 Data processing and analysis……………………………………………………..75

3.9 Outcome measure………………………………………………………………...76

3.10 Statistics analysis…………..……………………………………………………76

3.11 Reliability test…………………………………………………………………...76

Chapter 4 Risk Assessment…………………………………………….…………..77

Chapter 5 Result…………..…………………………………………….…………..78

5.1 Reliability test…….................................................................................................78

5.2 Demographic data……………………………………………………………….103

5.3 Spatio-temporal data…………………………………………………………….104

5.4 Joint kinetamic………………………………………………………………….107

5.5 Joint Kinetic…………………………………………………………………….108

Chapter 6 Discussion………………………………………………...….…………193

Chapter 7 Conclusion………..………………………………………….…………198

Reference...................................................................................................................199
Appendix…………………………………………………………………………...206
List of figures
Figure 2.1 Ankle & foot bone structure…………………………………………….....3

Figure 2.2 Ankle and foot joint ……..…………………………………………….......4

Figure 2.3 Gait event during walking…………………………………………….......16

Figure 2.4 Subdividing of gait event during walking ………………………………..17

Figure 2.5 Modifiled figure eight walking …………………………………………..20

Figure 2.6 Joint kinematics on fast speed during stance phase ……………………...53

Figure 2.7 Joint kinematics on self-paced speed during stance phase ………………54

Figure 2.8 Joint kinematics on slow speed during stance phase …………………….54

Figure 2.9 Ground reaction force (GRF) on 3 gait speeds during stance phase………………………………………………………………………………….55

Figure 2.10 Joint power on 3 gait speeds during stance phase …..…………..............57

Figure 2.11 Joint moment on fast speed during stance phase ..……………………...59

Figure 2.12 Joint moment on self-paced speed during stance phase ………………..61

Figure 2.13 Joint moment on slow speed during stance phase ……………………...62

Figure 2.14 Joint force on fast speed during stance phase…………………………...64

Figure 2.15 Joint force on self-paced speed during stance phase ……………………65

Figure 2.16 Joint force on slow speed during stance phase …………………............66

Figure 3.1 Instrumentation ……………………………………………......................72

Figure 3.2 Marker setting …………………………………………………………....73

Figure 5.1: Joint kinematics on 3 speeds during continuous walking at stance phase………………………………………………………………………………...112

Figure 5.2: Joint kinematics on 3 speeds during single walking at stance phase………………………………………………………………………………...114

Figure 5.3: Other joint kinematics on fast speed during continuous walking at stance phase………………………………………………………………………………...118

Figure 5.4: Other joint kinematics on self-selected speed during continuous walking at stance phase…………………………………………………………………………123

Figure 5.5: Other joint kinematics on slow speed during continuous walking at stance phase………………………………………………………………………...............127

Figure 5.6: Other joint kinematics on fast speed during single walking at stance phase………………………………………………………………………………...131

Figure 5.7: Other joint kinematics onself-selected speed during single walking at stance phase…………………………………………………………………………136


Figure 5.8: Other joint kinematics on slow speed during single walking at stance phase………………………………………………………………………………..140

Figure 5.9: Joint kinetics on 3 speeds during continuous walking at stance phase………………………………………………………………………………...143

Figure 5.10: Joint kinetics on 3 speeds during single walking at stance phase………………………………………………………………………………...145

Figure 5.11: Other ground reaction force and joint reaction force on fast speed during continuous walking at stance phase………………………………………...............149

Figure 5.12: Other ground reaction force and joint reaction force on self-selected speed during continuous walking at stance phase…………………………………..152

Figure 5.13: Other ground reaction force and joint reaction force on slow speed during continuous walking at stance phase………………………………………...156

Figure 5.14: Other joint moment and joint power on fast speed during continuous walking at stance phase……………………………………………….....................159

Figure 5.15: Other joint moment and joint power on self-selected speed during continuous walking at stance phase……………………….......................................162

Figure 5.16: Other joint moment and joint power on slow speed during continuous walking at stance phase……………………………………………………………..165

Figure 5.17: Other ground reaction force and joint reaction force on fast speed during single walking at stance phase………………………………………….…..............168

Figure 5.18: Other ground reaction force and joint reaction force on self-selected speed during single walking at stance phase……………………………..................172

Figure 5.19: Other ground reaction force and joint reaction force on slow speed during single walking at stance phase………………………………………............175

Figure 5.20: Other joint moment and joint power on fast speed during single walking at stance phase………………………………………...............................................179

Figure 5.21: Other joint moment and joint power on self-selected speed during single walking at stance phase………………………..........................................................182

Figure 5.22: Other joint moment and joint power on slow speed during single walking at stance phase………………………………………..................................184

Figure 5.23: Displacement of the medial longitudinal arch (MLA) on 3 walking speeds during continuous and single walking at stance phase……………………...186
List of tables
Table 2.1: Previous studies of chornic ankle instability on spatiotemporal data…………………………………………………………………………………...29

Table 2.2 Previous studies of chronic ankle instability on kinematic data …………………………………………………………………………………..31

Table 2.3 Previous studies of chronic ankle instability on kinetic data ……………..33

Table 2.4 Previous studies of chronic ankle instability on spatiotemporal data in detial ………………………………………………………………………................35

Table 2.5 Previous studies of chronic ankle instability on kinematic data in detial ….….…………………………………………………………………………..41

Table 2.6 Previous studies of chronic ankle instability on kinetic data in detial….….…………………………………………………………………………..47

Table 2.7 Characteristics of anthropometric data in each group………………...…...49

Table 2.8 Spatio-temporal data (self–selected walking speed)……………………..50

Table 2.9 Spatio-temporal data (fast walking speed)………………...........................50

Table 2.10 Spatio-temporal data (slow walking speed)…………….………………..50

Table 2.11 Joint kinetics and kinematics on hip, knee, ankle, hindfoot, pelvic joint, and GRF at fast walking speed……..………………………………....................…..68

Table 2.12 Joint kinetics and kinematics on hip, knee, ankle, and pelvic joint and GRF at self-selected walking speed…..……………………………………………….…...69

Table 2.13 Joint kinetics and kinematics on hip, knee, ankle, and pelvic joint and GRF at slow walking speed………...………………………………………………………70

Table 3.1 Oxford foot model placement……………………………………………..75

Table 5.1: Intra trial reliability on joint kinematics during continuous walking……………………………………………………………………………….79


Table 5.2: Intra trial reliability on joint reaction force and ground reaction force during continuous walking…………………..............................................................81

Table 5.3: Intra trial reliability on the joint moment and power kinetic during continuous walking…………………………………………………………………..83

Table 5.4: Intra trial reliability on joint kinematics during single walking…………..85

Table 5.5: Intra trial reliability on joint reaction force and ground reaction force during single walking……….......................................................................................88

Table 5.6: Intra trial reliability on the joint moment and power kinetic during single walking……………………………………………………………………………….90

Table 5.7: Intra-day reliability on joint kinematics during continuous walking………………….............................................................................................92

Table 5.8: Intra-day reliability on joint reaction force and ground reaction force during continuous walking…………………...........................................................................94

Table 5.9: Intra-day reliability on the joint moment and power during continuous walking……………………………………………………………………………….96

Table 5.10: Intra-day reliability on joint kinematic during single walking…………..98

Table 5.11: Intra-day reliability on joint reaction force and ground reaction force during single walking……………………………………………………………….100

Table 5.12: Intra-day reliability on the joint moment and power during single walking…………………...........................................................................................102

Table 5.13: Characteristics of anthropometric data in each group………………………………………………………………………………...104

Table 5.14: Spatio-temporal data in each group during continuous walking (CW) (self-selected speed) ………………………………………………………………..104

Table 5.15: Spatio-temporal data in each group during continuous walking (CW) (fast speed) ……………………………………………………………………………….105

Table 5.16: Spatio-temporal data in each group during continuous walking (CW) (slow speed) ………………………………………………………………………...105

Table 5.17: Spatio-temporal data in each group during single walking (CW) (self-selected speed) ……………………………………………………………………...106

Table 5.18: Spatio-temporal data in each group during single walking (SW) (fast speed) ……………………………………………………………………………….106

Table 5.19: Spatio-temporal data in each group during single walking (SW) (slow speed)………………………………………………………………………………..106

Table 5.20: Joint kinetics and kinematics on hip, knee, ankle, and hindfoot joint at fast continuous walking speeds…………………………………...……………………..187

Table 5.21: Joint kinetics and kinematics on the ankle hindfoot joint at self-selected continuous walking speeds………………………………………………...188

Table 5.22: Joint kinetics and kinematics on hip, pelvic, ankle, and hindfoot joint at slow continuous walking speeds……………………………………………………189

Table 5.23: Joint kinetics and kinematics on the knee, and ankle joint at fast single walking speeds……………………………………………………………………...190

Table 5.24: Joint kinetics and kinematics on the knee, ankle, and hindfoot joint at self-selected single walking speeds……………………………………………………..191

Table 5.25: Joint kinetics and kinematics on hip, knee, ankle, and hind-foot joint at slow single walking speeds…………………………………………………………192


Reference
Aynardi, M., Pedowitz, D. I., & Raikin, S. M. (2015). Subtalar instability. Foot Ankle Clin, 20(2), 243-252. doi:10.1016/j.fcl.2015.02.007
Baker, R., & Hart, H. M. (2013). Measuring walking: a handbook of clinical gait analysis (Vol. 1): Mac Keith Press London.
Blackwood, C. B., Yuen, T. J., Sangeorzan, B. J., & Ledoux, W. R. (2005). The midtarsal joint locking mechanism. Foot Ankle Int, 26(12), 1074-1080. doi:10.1177/107110070502601213
Bonnefoy-Mazure, A., & Armand, S. (2015). Normal gait. In (pp. 199-214).
Bozkurt, M., & Doral, M. N. (2006). Anatomic factors and biomechanics in ankle instability. Foot Ankle Clin, 11(3), 451-463. doi:10.1016/j.fcl.2006.06.001
Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthop Trauma, 30(3), 232-238. doi:10.1016/j.mporth.2016.04.015
Brown, S. D., & Ryan, J. (2009). Examination Of Orthopedic And Athletic Injuries: FA Davis Company.
Canseco, K., Long, J., Marks, R., Khazzam, M., & Harris, G. (2008). Quantitative characterization of gait kinematics in patients with hallux rigidus using the Milwaukee foot model. J Orthop Res, 26(4), 419-427. doi:10.1002/jor.20506
Carson, M. C., Harrington, M. E., Thompson, N., O'Connor, J. J., & Theologis, T. N. (2001). Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech, 34(10), 1299-1307. doi:10.1016/s0021-9290(01)00101-4
Castermans, T., Duvinage, M., Cheron, G., & Dutoit, T. (2013). Towards effective non-invasive brain-computer interfaces dedicated to gait rehabilitation systems. Brain Sci, 4(1), 1-48. doi:10.3390/brainsci4010001
Chinn, L., Dicharry, J., & Hertel, J. (2013). Ankle kinematics of individuals with chronic ankle instability while walking and jogging on a treadmill in shoes. Phys Ther Sport, 14(4), 232-239. doi:10.1016/j.ptsp.2012.10.001
Cho, J., Cheon, W., Ahn, S. H., Lee, M., Park, H., & Han, Y. (2017). Development of a Real-Time Internal and External Marker Based Gating System for Proton Therapy. Progress in Medical Physics, 28, 92. doi:10.14316/pmp.2017.28.3.92
Cofaru, N. F., & Brănescu, A. H. (2021). A review on biomechanics of the hallux valgus pathology and its surgical treatments. IOP Conference Series: Materials Science and Engineering, 1009. doi:10.1088/1757-899x/1009/1/012015
Cornwall, M. W., & McPoil, T. G. (1999). Three-dimensional movement of the foot during the stance phase of walking. J Am Podiatr Med Assoc, 89(2), 56-66. doi:10.7547/87507315-89-2-56
Cornwall, M. W., & McPoil, T. G. (2002). Motion of the calcaneus, navicular, and first metatarsal during the stance phase of walking. J Am Podiatr Med Assoc, 92(2), 67-76. doi:10.7547/87507315-92-2-67
Dawe, E. J. C., & Davis, J. (2011). (vi) Anatomy and biomechanics of the foot and ankle. Orthopaedics and Trauma, 25(4), 279-286. doi:10.1016/j.mporth.2011.02.004
De Mits, S., Segers, V., Woodburn, J., Elewaut, D., De Clercq, D., & Roosen, P. (2012). A clinically applicable six-segmented foot model. J Orthop Res, 30(4), 655-661. doi:10.1002/jor.21570
De Ridder, R., Willems, T., Vanrenterghem, J., Robinson, M., Pataky, T., & Roosen, P. (2013). Gait kinematics of subjects with ankle instability using a multisegmented foot model. Med Sci Sports Exerc, 45(11), 2129-2136. doi:10.1249/MSS.0b013e31829991a2
DeJong, A. F., Koldenhoven, R. M., Hart, J. M., & Hertel, J. (2020). Gluteus medius dysfunction in females with chronic ankle instability is consistent at different walking speeds. Clin Biomech (Bristol, Avon), 73, 140-148. doi:10.1016/j.clinbiomech.2020.01.013
Delahunt, E., Monaghan, K., & Caulfield, B. (2006). Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint. Am J Sports Med, 34(12), 1970-1976. doi:10.1177/0363546506290989
Doherty, C., Bleakley, C., Hertel, J., Caulfield, B., Ryan, J., & Delahunt, E. (2016). Recovery From a First-Time Lateral Ankle Sprain and the Predictors of Chronic Ankle Instability: A Prospective Cohort Analysis. Am J Sports Med, 44(4), 995-1003. doi:10.1177/0363546516628870
Drewes, L. K., McKeon, P. O., Paolini, G., Riley, P., Kerrigan, D. C., Ingersoll, C. D., & Hertel, J. (2009). Altered ankle kinematics and shank-rear-foot coupling in those with chronic ankle instability. J Sport Rehabil, 18(3), 375-388. doi:10.1123/jsr.18.3.375
Dubbeldam, R., Buurke, J. H., Simons, C., Groothuis-Oudshoorn, C. G., Baan, H., Nene, A. V., & Hermens, H. J. (2010). The effects of walking speed on forefoot, hindfoot and ankle joint motion. Clin Biomech (Bristol, Avon), 25(8), 796-801. doi:10.1016/j.clinbiomech.2010.06.007
Fong, D. T., Ha, S. C., Mok, K. M., Chan, C. W., & Chan, K. M. (2012). Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions. Am J Sports Med, 40(11), 2627-2632. doi:10.1177/0363546512458259
Fraser, J. J., Feger, M. A., & Hertel, J. (2016). MIDFOOT AND FOREFOOT INVOLVEMENT IN LATERAL ANKLE SPRAINS AND CHRONIC ANKLE INSTABILITY. PART 1: ANATOMY AND BIOMECHANICS. Int J Sports Phys Ther, 11(6), 992-1005.
Fukuchi, C. A., Fukuchi, R. K., & Duarte, M. (2019). Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev, 8(1), 153. doi:10.1186/s13643-019-1063-z
Garofalo, P., Cutti, A. G., Filippi, M. V., Cavazza, S., Ferrari, A., Cappello, A., & Davalli, A. (2009). Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus in clinical settings. Med Biol Eng Comput, 47(5), 475-486. doi:10.1007/s11517-009-0454-z
Gigi, R., Haim, A., Luger, E., Segal, G., Melamed, E., Beer, Y., . . . Elbaz, A. (2015). Deviations in gait metrics in patients with chronic ankle instability: a case control study. Journal of Foot and Ankle Research, 8(1), 1. doi:10.1186/s13047-014-0058-1
Glasoe, W. M., Yack, H. J., & Saltzman, C. L. (1999). Anatomy and biomechanics of the first ray. Phys Ther, 79(9), 854-859.
Gribble, P. A., Delahunt, E., Bleakley, C., Caulfield, B., Docherty, C. L., Fourchet, F., . . . Wikstrom, E. A. (2013). Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. Journal of Orthopaedic & Sports Physical Therapy, 43(8), 585-591. doi:10.2519/jospt.2013.0303
Herb, C. C., & Hertel, J. (2014). Current concepts on the pathophysiology and management of recurrent ankle sprains and chronic ankle instability. Current Physical Medicine and Rehabilitation Reports, 2(1), 25-34. doi:10.1007/s40141-013-0041-y
Hershkovich, O., Tenenbaum, S., Gordon, B., Bruck, N., Thein, R., Derazne, E., . . . Afek, A. (2015). A large-scale study on epidemiology and risk factors for chronic ankle instability in young adults. J Foot Ankle Surg, 54(2), 183-187. doi:10.1053/j.jfas.2014.06.001
Hertel, J. (2002). Functional Anatomy, Pathomechanics, and Pathophysiology of Lateral Ankle Instability. J Athl Train, 37(4), 364-375.
Herzog, M. M., Kerr, Z. Y., Marshall, S. W., & Wikstrom, E. A. (2019). Epidemiology of Ankle Sprains and Chronic Ankle Instability. J Athl Train, 54(6), 603-610. doi:10.4085/1062-6050-447-17
Hess, R. J., Brach, J. S., Piva, S. R., & VanSwearingen, J. M. (2010). Walking skill can be assessed in older adults: validity of the Figure-of-8 Walk Test. Phys Ther, 90(1), 89-99. doi:10.2522/ptj.20080121
Hicks, J. H. (1954). The mechanics of the foot. II. The plantar aponeurosis and the arch. J Anat, 88(1), 25-30.
Hiller, C. E., Kilbreath, S. L., & Refshauge, K. M. (2011). Chronic ankle instability: evolution of the model. J Athl Train, 46(2), 133-141. doi:10.4085/1062-6050-46.2.133
Hiller, C. E., Refshauge, K. M., Bundy, A. C., Herbert, R. D., & Kilbreath, S. L. (2006). The Cumberland ankle instability tool: a report of validity and reliability testing. Arch Phys Med Rehabil, 87(9), 1235-1241. doi:10.1016/j.apmr.2006.05.022
Hopkins, J. T., Coglianese, M., Glasgow, P., Reese, S., & Seeley, M. K. (2012). Alterations in evertor/invertor muscle activation and center of pressure trajectory in participants with functional ankle instability. J Electromyogr Kinesiol, 22(2), 280-285. doi:10.1016/j.jelekin.2011.11.012
Hubbard, T. J., Kaminski, T. W., Vander Griend, R. A., & Kovaleski, J. E. (2004). Quantitative assessment of mechanical laxity in the functionally unstable ankle. Med Sci Sports Exerc, 36(5), 760-766. doi:10.1249/01.mss.0000126604.85429.29
Hunt, A. E., Smith, R. M., & Torode, M. (2001). Extrinsic muscle activity, foot motion and ankle joint moments during the stance phase of walking. Foot Ankle Int, 22(1), 31-41. doi:10.1177/107110070102200105
Hunt, K. J., Pereira, H., Kelley, J., Anderson, N., Fuld, R., Baldini, T., . . . D'Hooghe, P. (2019). The Role of Calcaneofibular Ligament Injury in Ankle Instability: Implications for Surgical Management. Am J Sports Med, 47(2), 431-437. doi:10.1177/0363546518815160
Hwang, S., Choi, H., & Kim, Y. (2004). Motion analysis based on a multi-segment foot model in normal walking. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 7, 5104-5106. doi:10.1109/IEMBS.2004.1404410
Jam, B. (2005). Evaluation and Retraining of the Intrinsic Foot Muscles for Pain Syndromes Related to Abnormal Control of Pronation.
Jenkyn, T. R., & Nicol, A. C. (2007). A multi-segment kinematic model of the foot with a novel definition of forefoot motion for use in clinical gait analysis during walking. J Biomech, 40(14), 3271-3278. doi:10.1016/j.jbiomech.2007.04.008
Jiang, J., Lee, K.-M., & Ji, J. (2018). Review of anatomy-based ankle–foot robotics for mind, motor and motion recovery following stroke: design considerations and needs. International Journal of Intelligent Robotics and Applications, 2(3), 267-282. doi:10.1007/s41315-018-0065-7
Kalin, P. J., & Hirsch, B. E. (1987). The origins and function of the interosseous muscles of the foot. J Anat, 152, 83-91.
Kavounoudias, A., Roll, R., & Roll, J.-P. J. N. (1998). The plantar sole is a ‘dynamometric map’for human balance control. 9(14), 3247-3252.
Kelly, L., Kuitunen, S., Racinais, S., & Cresswell, A. J. C. b. (2012). Recruitment of the plantar intrinsic foot muscles with increasing postural demand. 27 1, 46-51.
Kepple, T. M., Stanhope, S. J., Lohmann, K. N., & Roman, N. L. (1990). A video-based technique for measuring ankle-subtalar motion during stance. J Biomed Eng, 12(4), 273-280. doi:10.1016/0141-5425(90)90001-4
Kitaoka, H. B., Crevoisier, X. M., Hansen, D., Katajarvi, B., Harbst, K., & Kaufman, K. R. (2006). Foot and ankle kinematics and ground reaction forces during ambulation. Foot Ankle Int, 27(10), 808-813. doi:10.1177/107110070602701010
Kobayashi, T., & Gamada, K. (2014). Lateral Ankle Sprain and Chronic Ankle Instability: A Critical Review. Foot Ankle Spec, 7(4), 298-326. doi:10.1177/1938640014539813
Kobayashi, T., Koshino, Y., & Miki, T. (2021). Abnormalities of foot and ankle alignment in individuals with chronic ankle instability: a systematic review. BMC Musculoskelet Disord, 22(1), 683. doi:10.1186/s12891-021-04537-6
Konig, N., Singh, N. B., von Beckerath, J., Janke, L., & Taylor, W. R. (2014). Is gait variability reliable? An assessment of spatio-temporal parameters of gait variability during continuous overground walking. Gait Posture, 39(1), 615-617. doi:10.1016/j.gaitpost.2013.06.014
Kosik, K. B., Terada, M., McCann, R., Thomas, A., Johnson, N., & Gribble, P. (2019). Differences in temporal gait mechanics are associated with decreased perceived ankle joint health in individuals with chronic ankle instability. Gait Posture, 70, 403-407. doi:10.1016/j.gaitpost.2019.03.032
Krahenbuhl, N., Horn-Lang, T., Hintermann, B., & Knupp, M. (2017). The subtalar joint: A complex mechanism. EFORT Open Rev, 2(7), 309-316. doi:10.1302/2058-5241.2.160050
Leardini, A., Benedetti, M. G., Catani, F., Simoncini, L., & Giannini, S. (1999). An anatomically based protocol for the description of foot segment kinematics during gait. Clin Biomech (Bristol, Avon), 14(8), 528-536. doi:10.1016/s0268-0033(99)00008-x
Leardini, A., & Caravaggi, P. (2016). Kinematic Foot Models for Instrumented Gait Analysis. In Handbook of Human Motion (pp. 1-24).
Lee, I., Lee, S. Y., & Ha, S. (2021). Alterations of lower extremity function, health-related quality of life, and spatiotemporal gait parameters among individuals with chronic ankle instability. Phys Ther Sport, 51, 22-28. doi:10.1016/j.ptsp.2021.06.006
Lima, Y. L., Ferreira, V., de Paula Lima, P. O., Bezerra, M. A., de Oliveira, R. R., & Almeida, G. P. L. (2018). The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Phys Ther Sport, 29, 61-69. doi:10.1016/j.ptsp.2017.07.003
Lin, C. I., Mayer, F., & Wippert, P. M. (2020). Cross-cultural adaptation, reliability, and validation of the Taiwan-Chinese version of Cumberland Ankle Instability Tool. Disabil Rehabil, 1-7. doi:10.1080/09638288.2020.1774928
Loudon, J. K., & Bell, S. L. (1996). The foot and ankle: an overview of arthrokinematics and selected joint techniques. J Athl Train, 31(2), 173-178.
Ltd, V. M. S. (Vero camera). https://www.vicon.com/cms/wp-content/uploads/2019/08/vero-1.jpg
Luciano, F., Ruggiero, L., & Pavei, G. (2021). Sample size estimation in locomotion kinematics and electromyography for statistical parametric mapping. J Biomech, 122, 110481. doi:10.1016/j.jbiomech.2021.110481
Manter, J. T. J. T. a. r. (1941). Movements of the subtalar and transverse tarsal joints. 80(4), 397-410.
McKeon, P. O., Hertel, J., Bramble, D., & Davis, I. (2015). The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med, 49(5), 290. doi:10.1136/bjsports-2013-092690
Medina McKeon, J. M., & Hoch, M. C. (2019). The Ankle-Joint Complex: A Kinesiologic Approach to Lateral Ankle Sprains. Journal of Athletic Training, 54(6), 589-602. doi:10.4085/1062-6050-472-17
Meyer, J. M., Garcia, J., Hoffmeyer, P., & Fritschy, D. (1988). The subtalar sprain. A roentgenographic study. Clin Orthop Relat Res(226), 169-173.
Moisan, G., Descarreaux, M., & Cantin, V. (2017). Effects of chronic ankle instability on kinetics, kinematics and muscle activity during walking and running: A systematic review. Gait Posture, 52, 381-399. doi:10.1016/j.gaitpost.2016.11.037
Moisan, G., Mainville, C., Descarreaux, M., & Cantin, V. (2020). Kinematic, kinetic and electromyographic differences between young adults with and without chronic ankle instability during walking. J Electromyogr Kinesiol, 51, 102399. doi:10.1016/j.jelekin.2020.102399
Molenbroek, J. F. M., Fleuren, M., & Rensink, G. K. (2013). From S-M-L-XL to Mass Customization. Case Study: External Ankle Sprain Protection with Exo-L. Paper presented at the Proceedings of the 4th International Conference on 3D Body Scanning Technologies, Long Beach CA, USA, 19-20 November 2013.
Monaghan, K., Delahunt, E., & Caulfield, B. (2006). Ankle function during gait in patients with chronic ankle instability compared to controls. Clin Biomech (Bristol, Avon), 21(2), 168-174. doi:10.1016/j.clinbiomech.2005.09.004
Norkus, S. A., & Floyd, R. T. (2001). The anatomy and mechanisms of syndesmotic ankle sprains. J Athl Train, 36(1), 68-73.
Northeast, L., Gautrey, C. N., Bottoms, L., Hughes, G., Mitchell, A. C. S., & Greenhalgh, A. (2018). Full gait cycle analysis of lower limb and trunk kinematics and muscle activations during walking in participants with and without ankle instability. Gait & Posture, 64, 114-118. doi:10.1016/j.gaitpost.2018.06.001
Nuesch, C., Roos, E., Pagenstert, G., & Mundermann, A. (2017). Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system. J Biomech, 57, 32-38. doi:10.1016/j.jbiomech.2017.03.015
Okita, N., Meyers, S. A., Challis, J. H., & Sharkey, N. A. (2014). Midtarsal joint locking: new perspectives on an old paradigm. J Orthop Res, 32(1), 110-115. doi:10.1002/jor.22477
Olsen, O. E., Myklebust, G., Engebretsen, L., & Bahr, R. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med, 32(4), 1002-1012. doi:10.1177/0363546503261724
Pataky, T. C., Robinson, M. A., & Vanrenterghem, J. (2013). Vector field statistical analysis of kinematic and force trajectories. J Biomech, 46(14), 2394-2401. doi:10.1016/j.jbiomech.2013.07.031
Perry, J., & Burnfield, J. (2010). Gait analysis. Normal and pathological function 2nd ed.
Perry, J., Burnfield, J. M. J. D. M., & Neurology, C. (1993). Gait analysis: normal and pathological function. 35, 1122-1122.
Rankine, L., Long, J., Canseco, K., & Harris, G. F. (2008). Multisegmental foot modeling: a review. Crit Rev Biomed Eng, 36(2-3), 127-181. doi:10.1615/critrevbiomedeng.v36.i2-3.30
Resende, R. A., Deluzio, K. J., Kirkwood, R. N., Hassan, E. A., & Fonseca, S. T. (2015). Increased unilateral foot pronation affects lower limbs and pelvic biomechanics during walking. Gait Posture, 41(2), 395-401. doi:10.1016/j.gaitpost.2014.10.025
Sarcon, A. K., Heyrani, N., Giza, E., & Kreulen, C. (2019). Lateral Ankle Sprain and Chronic Ankle Instability. Foot & Ankle Orthopaedics, 4(2). doi:10.1177/2473011419846938
Sarrafian, S. K. (1993). Biomechanics of the subtalar joint complex. Clin Orthop Relat Res(290), 17-26.
Seebauer, C. J., Bail, H. J., Rump, J. C., Hamm, B., Walter, T., & Teichgraber, U. K. (2013). Ankle laxity: stress investigation under MRI control. AJR Am J Roentgenol, 201(3), 496-504. doi:10.2214/AJR.12.8553
Seebauer, C. J., Bail, H. J., Rump, J. C., Hamm, B., Walter, T., & Teichgräber, U. K. (2013). Ankle laxity: stress investigation under MRI control. AJR Am J Roentgenol, 201(3), 496-504. doi:10.2214/ajr.12.8553
Son, S. J., Kim, H., Seeley, M. K., & Hopkins, J. T. (2019). Altered Walking Neuromechanics in Patients With Chronic Ankle Instability. J Athl Train, 54(6), 684-697. doi:10.4085/1062-6050-478-17
Soysa, A., Hiller, C., Refshauge, K., & Burns, J. (2012). Importance and challenges of measuring intrinsic foot muscle strength. J Foot Ankle Res, 5(1), 29. doi:10.1186/1757-1146-5-29
Springer, S., & Gottlieb, U. (2017). Effects of dual-task and walking speed on gait variability in people with chronic ankle instability: a cross-sectional study. BMC Musculoskelet Disord, 18(1), 316. doi:10.1186/s12891-017-1675-1
Standring, S., Ellis, H., Healy, J., Johnson, D., Williams, A., Collins, P., & Wigley, C. J. A. j. o. n. (2005). Gray's anatomy: the anatomical basis of clinical practice. 26(10), 2703.
Technologies, E. E. S., & Co, G. (Producer). [Vicon] Retrieved from https://est-kl.com/images/PDF/Vicon/Bonita_Optical.pdf
Tsushima, H., Morris, M. E., & McGinley, J. (2003). Test-retest reliability and inter-tester reliability of kinematic data from a three-dimensional gait analysis system. J Jpn Phys Ther Assoc, 6(1), 9-17. doi:10.1298/jjpta.6.9
Usuelli, F. G., Mason, L., Grassi, M., Maccario, C., Ballal, M., & Molloy, A. (2014). Lateral ankle and hindfoot instability: a new clinical based classification. Foot Ankle Surg, 20(4), 231-236. doi:10.1016/j.fas.2014.05.003
Van Hoeve, S., De Vos, J., Weijers, P., Verbruggen, J., Willems, P., Poeze, M., & Meijer, K. (2015). Repeatability of the Oxford foot model for kinematic gait analysis of the foot and ankle.
Vuurberg, G., Hoorntje, A., Wink, L. M., van der Doelen, B. F. W., van den Bekerom, M. P., Dekker, R., . . . Kerkhoffs, G. (2018). Diagnosis, treatment and prevention of ankle sprains: update of an evidence-based clinical guideline. Br J Sports Med, 52(15), 956. doi:10.1136/bjsports-2017-098106
Waterman, B. R., Owens, B. D., Davey, S., Zacchilli, M. A., & Belmont, P. J., Jr. (2010). The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am, 92(13), 2279-2284. doi:10.2106/JBJS.I.01537
Wikstrom, E. A., & Hass, C. J. (2012). Gait termination strategies differ between those with and without ankle instability. Clin Biomech (Bristol, Avon), 27(6), 619-624. doi:10.1016/j.clinbiomech.2012.01.001
Woodburn, J., Turner, D. E., Helliwell, P. S., & Barker, S. (1999). A preliminary study determining the feasibility of electromagnetic tracking for kinematics at the ankle joint complex. Rheumatology (Oxford), 38(12), 1260-1268. doi:10.1093/rheumatology/38.12.1260
Wright, C. J., Arnold, B. L., Ross, S. E., & Pidcoe, P. E. (2013). Individuals With Functional Ankle Instability, but not Copers, Have Increased Forefoot Inversion During Walking Gait. Athletic Training & Sports Health Care, 5(5), 201-209. doi:10.3928/19425864-20130827-01
Wu, W. L., Su, F. C., Cheng, Y. M., Huang, P. J., Chou, Y. L., & Chou, C. K. (2000). Gait analysis after ankle arthrodesis. Gait Posture, 11(1), 54-61. doi:10.1016/s0966-6362(99)00049-1
Youdas, J. W., McLean, T. J., Krause, D. A., & Hollman, J. H. (2009). Changes in active ankle dorsiflexion range of motion after acute inversion ankle sprain. J Sport Rehabil, 18(3), 358-374. doi:10.1123/jsr.18.3.358
Zelik, K. E., La Scaleia, V., Ivanenko, Y. P., & Lacquaniti, F. (2015). Coordination of intrinsic and extrinsic foot muscles during walking. Eur J Appl Physiol, 115(4), 691-701. doi:10.1007/s00421-014-3056-x


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊