|
1.Demirel, G.; Usta, H.; Yilmaz, M.; Celik, M.; Alidagi, H. A.; Buyukserin, F., Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. Journal of Materials Chemistry C 2018, 6 (20), 5314-5335. 2.Suh, J. S.; Moskovits, M., Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. Journal of the American Chemical Society 1986, 108 (16), 4711-4718. 3.daFonseca, B. G.; Costa, L. A. S.; Sant'Ana, A. C., Insights of adsorption mechanisms of Trp-peptides on plasmonic surfaces by SERS. Spectrochim Acta A Mol Biomol Spectrosc 2018, 190, 383-391. 4.Podstawka, E.; Ozaki, Y.; Proniewicz, L. M., Adsorption of S–S Containing Proteins on a Colloidal Silver Surface Studied by Surface-Enhanced Raman Spectroscopy. Applied Spectroscopy 2004, 58 (10), 1147-1156. 5.Tahir, M. A.; Dina, N. E.; Cheng, H.; Valev, V. K.; Zhang, L., Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale 2021, 13 (27), 11593-11634. 6.Lu, Y.; Mao, J.; Wang, Z.; Qin, Y.; Zhou, J., Facile Synthesis of Porous Hexapod Ag@AgCl Dual Catalysts for In Situ SERS Monitoring of 4-Nitrothiophenol Reduction. Catalysts 2020, 10, 746. 7.Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-L., Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports 2013, 3 (1), 2997. 8.Yang, Y.; Teng, F.; Yu, L.; Liu, Y.; Song, P.; Xia, L., Isomerization of p,p′-Diiodoazobenzene Controlled by the Surface Plasmon-Assisted Reaction. ACS Omega 2019, 4 (4), 7076-7081. 9.Almohammed, S.; Tade Barwich, S.; Mitchell, A. K.; Rodriguez, B. J.; Rice, J. H., Enhanced photocatalysis and biomolecular sensing with field-activated nanotube-nanoparticle templates. Nature Communications 2019, 10 (1), 2496. 10.Schlücker, S.; Xie, W., Surface-enhanced Raman Spectroscopic Detection of Molecular Chemo- and Plasmo-Catalysis on Noble Metal Nanoparticles. Chemical Communications 2018, 54. 11.Mosier-Boss, P. A., Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7 (6). 12.Lin, T.-H.; Lin, C.-W.; Liu, H.-H.; Sheu, J.-T.; Hung, W.-H., Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chemical Communications 2011, 47 (7), 2044-2046. 13.郭珊綺. 樹狀貴金屬的製備及其在表面增顯拉曼散射的應用. 東海大學, 台中市, 2015. 14.Arihara, K.; Ariga, T.; Takashima, N.; Arihara, K.; Okajima, T.; Kitamura, F.; Tokuda, K.; Ohsaka, T., Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates. Physical Chemistry Chemical Physics 2003, 5 (17), 3758-3761. 15.陳玉美. 銅修飾樹狀金應用於亞硝酸離子電化學量測. 東海大學, 台中市, 2018. 16.Vendamani, V. S.; Rao, S. V. S. N.; Pathak, A. P.; Soma, V. R., Silicon Nanostructures for Molecular Sensing: A Review. ACS Applied Nano Materials 2022, 5 (4), 4550-4582. 17.Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297. 18.Fasolato, C., Traditional Raman and SERS: Fundamentals and State of the Art. In Surface Enhanced Raman Spectroscopy for Biophysical Applications: Using Plasmonic Nanoparticle Assemblies, Fasolato, C., Ed. Springer International Publishing: Cham, 2018; pp 9-56. 19.Siddhanta, S.; Narayana, C., Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing Invited Review Article. Nanomaterials and Nanotechnology 2012, 2. 20.Sun, M.; Xu, H., A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 2012, 8 (18), 2777-86. 21.Dong, B.; Fang, Y.; Chen, X.; Xu, H.; Sun, M., Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Films. Langmuir 2011, 27 (17), 10677-10682. 22.Choudhary, Y. S.; Jothi, L.; Nageswaran, G., Chapter 2 - Electrochemical Characterization. In Spectroscopic Methods for Nanomaterials Characterization, Thomas, S.; Thomas, R.; Zachariah, A. K.; Mishra, R. K., Eds. Elsevier: 2017; pp 19-54. 23.Nnamchi, P. S.; Obayi, C. S., Chapter 4 - Electrochemical Characterization of Nanomaterials. In Characterization of Nanomaterials, Mohan Bhagyaraj, S.; Oluwafemi, O. S.; Kalarikkal, N.; Thomas, S., Eds. Woodhead Publishing: 2018; pp 103-127. 24.González-López, A.; Fernández Abedul, M. T., Chapter 9 - Electrochemical detection of melatonin in a flow injection analysis system. In Laboratory Methods in Dynamic Electroanalysis, Fernandez Abedul, M. T., Ed. Elsevier: 2020; pp 85-97. 25.Bhatt, V., Chapter 4 - Thermodynamics and Kinetics of Complex Formation. In Essentials of Coordination Chemistry, Bhatt, V., Ed. Academic Press: 2016; pp 111-137. 26.Kecili, R.; Hussain, C. M., Chapter 4 - Mechanism of Adsorption on Nanomaterials. In Nanomaterials in Chromatography, Hussain, C. M., Ed. Elsevier: 2018; pp 89-115. 27.Rackley, S. A., Chapter 7 - Adsorption Capture Systems. In Carbon Capture and Storage, Rackley, S. A., Ed. Butterworth-Heinemann: Boston, 2010; pp 133-157. 28.Balakrishnan, D.; Lamblin, G.; Thomann, J. S.; Guillot, J.; Duday, D.; van den Berg, A.; Olthuis, W.; Pascual-García, C., Influence of polymerisation on the reversibility of low-energy proton exchange reactions by Para-Aminothiolphenol. Sci Rep 2017, 7 (1), 15401. 29.Handa, S.; Yu, Y.; Futamata, M., Adsorbed state of p-mercaptobenzoic acid on silver nanoparticles. Vibrational Spectroscopy 2014, 72. 30.Radić, N.; Prkić, A., Historical remarks on the Henderson-Hasselbalch equation: its advantages and limitations and a novel approach for exact pH calculation in buffer region. Reviews in Analytical Chemistry 2012, 31 (2), 93-98. 31.Hills, A. G., pH and the Henderson-Hasselbalch equation. The American Journal of Medicine 1973, 55 (2), 131-133. 32.Zhang, Y.; Hu, Y.; Li, G.; Zhang, R., A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchimica Acta 2019, 186 (7), 477. 33.Pal, S.; Paul, S.; Chattopadhyay, A., Enhanced solid-state plasmon catalyzed oxidation and SERS signal in the presence of transition metal cations at the surface of gold nanostructures. Physical Chemistry Chemical Physics 2021, 23 (38), 21808-21816. 34.Gabudean, A. M.; Biro, D.; Astilean, S., Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods. Journal of Molecular Structure 2011, 993 (1), 420-424. 35.Sun, M.; Huang, Y.; Xia, L.; Chen, X.; Xu, H., The pH-Controlled Plasmon-Assisted Surface Photocatalysis Reaction of 4-Aminothiophenol to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Colloids. The Journal of Physical Chemistry C 2011, 115 (19), 9629-9636. 36.Song, W.; Querebillo, C. J.; Götz, R.; Katz, S.; Kuhlmann, U.; Gernert, U.; Weidinger, I. M.; Hildebrandt, P., Reversible light-dependent molecular switches on Ag/AgCl nanostructures. Nanoscale 2017, 9 (24), 8380-8387. 37.Koetz, J., The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance. Nanomaterials 2020, 10 (11). 38.Cao, M.; Zhou, L.; Xu, X.; Cheng, S.; Yao, J.-L.; Fan, L.-J., Galvanic replacement approach for bifunctional polyacrylonitrile/Ag–M (M = Au or Pd) nanofibers as SERS-active substrates for monitoring catalytic reactions. Journal of Materials Chemistry A 2013, 1 (31), 8942-8949. 39.Yang, J.; Wang, X.-Y.; Zhou, L.; Lu, F.; Cai, N.; Li, J.-M., Highly sensitive SERS monitoring of catalytic reaction by bifunctional Ag-Pd triangular nanoplates. Journal of Saudi Chemical Society 2019, 23 (7), 887-895. 40.Du, P.; Zhang, X.; Yin, H.; Zhao, Y.; Liu, L.; Wu, Z.; Xu, H., In situ surface-enhanced Raman scattering monitoring of reduction of 4-nitrothiophenol on bifunctional metallic nanostructure. Japanese Journal of Applied Physics 2018, 57 (3), 030308. 41.Zhang, J.; Winget, S. A.; Wu, Y.; Su, D.; Sun, X.; Xie, Z.-X.; Qin, D., Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy. ACS Nano 2016, 10 (2), 2607-2616. 42.Bizzarri, M. S. P. A. R.; Cannistraro, M. S. P. S., SERS detection of thrombin by protein recognition using functionalized gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3 (4), 306-310. 43.Gao, R.; Song, X.; Zhan, C.; Weng, C.; Cheng, S.; Guo, K.; Ma, N.; Chang, H.; Guo, Z.; Luo, L.-B.; Yu, L., Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sensors and Actuators B: Chemical 2020, 314, 128081. 44.張家瑜. 利用表面增顯拉曼研究半胱胺酸於樹狀銀電極表面的吸附行為與偶合反應. 東海大學, 台中市, 2020. 45.謝云靜. 表面修飾樹狀金電極及其SERS應用. 國立臺灣師範大學, 台北市, 2014. 46.Yang, T.; Xu, S.; Ren, S.; Yin, L.; Jiang, Y.; Liu, D.; Yin, F.; Zhao, H., A facile and “green” chemistry method of synthesis of Micro-scale noble metals (Au, Ag, Cu). IOP Conference Series: Materials Science and Engineering 2018, 452, 022120.
|