跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉佩蓉
研究生(外文):YEH, PEI-RONG
論文名稱:利用表面增顯拉曼研究改變4氨基苯硫酚於樹狀金電極表面的吸附及反應
論文名稱(外文):SERS Investigation of 4-Aminophenol Adsorption and Reaction on Dendritic Gold Electrode Surface
指導教授:賴英煌
指導教授(外文):LAI, YING-HUANG
口試委員:劉光華張哲瑋
口試委員(外文):LIU, GUANG-HUACHANG, JE-WEI
口試日期:2022-07-22
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:104
中文關鍵詞:表面增顯拉曼4-氨基苯硫酚樹狀金電極
外文關鍵詞:SERS4-AminophenolDendritic Gold Electrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面增顯拉曼(surface-enhanced Raman Scattering, SERS)是一個靈敏的偵測方法,當分析物與金屬表面的距離增加時,SERS的訊號會非常快速的衰減,此種性質是做為探討吸附於基材表面分子結構變化一個很好的工具。
在本研究中,是利用脈衝式電化學沉積法製備樹狀金電極,作為實驗的基材。而後利用改變濃度、環境酸鹼值及電位,以表面增顯拉曼探討4-氨基苯酚於樹狀金電極表面上的氧化還原反應。4-氨基苯硫酚因存在硫醇基所以可以與樹狀金電極產生強大的吸引力,本次研究是探討不同濃度、酸鹼環境及電位下對4-氨基苯硫酚的氨基氧化還原的反應強弱。
由研究成果顯示,當4-氨基苯硫酚的濃度越低,越會氧化形成4-硝基苯硫酚,本研究也繪製出等溫吸附曲線說明4-氨基苯酚在樹狀金。在酸鹼條件改變下的表面增顯拉曼光譜中,pH值越高,也就是環境酸鹼度越趨向鹼性,會有明顯的偶和反應,4-氨基苯酚(4-Aminothiophenol, 4-ATP)被氧化成反-4,4'-二巰基偶氮苯(trans-4,4-dimercaptoazobenzene, DMAB)。在改變電位的實驗中,發現無論酸鹼環境下皆會有明顯的氧化反應,但仍是鹼性條件下效果最佳,甚至可能氧化成4-硝基苯硫酚(4-Nitrothiophenol, 4-NTP)。

Surface-enhanced Raman Scattering (SERS) is a sensitive detection method. While the distance between the analyte and the metal surface increases, the SERS signal will attenuate sharply. This is a useful tool for observing the changes of the molecular structure on the surface of the substrate.
First, in this study, a pulsed electrochemical deposition method was used to prepare dendritic gold electrodes as the experimental substrate. Then, the redox reaction of 4-Aminophenol on the surface of the dendritic gold electrode was investigated by changing the concentration, the pH value of the environment, and the potential. Since thiol groups, 4-Aminothiophenol has a strong attraction with the dendritic gold electrode. This research explores whether the redox reaction of 4-Aminothiophenol under different concentrations, acid-base environments, and different potentials are strong or weak.
Moreover, the results indicate that the lower the concentration of 4-Aminophenol, the more it will oxidize to form 4-Nitrothiophenol. This study also provides an isotherm adsorption curve to illustrate the adsorption of 4-Aminophenol on the dendritic gold electrode status. The surface-enhanced Raman spectrum shows that the higher the pH value is, the more alkaline the condition is, and there will be an obvious oxidation reaction, which 4-Aminothiophenol (4-ATP) is oxidized into trans-4,4'-dimercaptoazobenzene (DMAB). In the experiments of changing various potentials, it was found that both acid and base environments generate oxidation reactions, but it has the best result in alkaline conditions, and it may even be oxidized to 4-Nitrothiophenol (4-NTP).

摘要I
ABSTRACTIII
目錄V
圖表目錄IX
一、緒論1
1.1前言1
1.2電化學沉積3
1.2.1三維樹狀金電極3
1.3拉曼散射6
1.4表面增顯拉曼散射7
1.4.1電磁場增顯7
1.4.2化學增顯8
1.5表面電漿共振9
1.6表面電漿子驅動催化反應10
1.7熱點11
1.8電化學方法13
1.8.1循環伏安法13
1.8.2安培法13
1.9朗繆耳等溫吸附曲線14
1.104-氨基苯硫酚(4-ATP)之反應性15
1.11文獻回顧19
1.12研究動機與目的21
二、實驗方法與儀器23
2.1實驗藥品23
2.2實驗流程24
2.3實驗製備辦法26
2.3.1玻璃碳電極前處理步驟26
2.3.2樹狀金電極之製備26
2.3.3樹狀金應用前處理27
2.3.4拉曼樣品製備28
2.3.3.14-ATP-浸泡法28
2.3.3.24-ATP -電化學吸附法29
2.3.3.34-ATP -電化學吸附法 + 氙燈29
2.3.3.44-ATP -電化學吸附法 + 安培法30
2.3.5 儀器設備簡介33
三、結果與討論35
3.1樹狀金電極性值鑑定35
3.1.1樹狀金電極性質鑑定-SEM分析35
3.1.2樹狀金電極性質鑑定-UV-Vis DRS分析36
3.1.3樹狀金電極性質鑑定-XRD分析36
3.1.4樹狀金電極性質鑑定-電化學活性表面積37
3.1.54-ATP、DMAB、4-NTP尺寸計算、分子個數計算38
3.24-ATP吸附於樹狀金電極上之表面增顯拉曼光譜42
3.2.1樹狀金沉積時間變化43
3.2.24-ATP之等溫吸附曲線50
3.2.3電位變化及pH值變化53
3.2.4使用安培法氧化4-ATP57
3.2.5不同條件下以拉曼動態積分觀察其反應趨勢65
3.2.5.1濃度1x10-4 M(θ=1)65
3.2.5.2濃度9x10-6 M(θ=0.5)67
3.2.5.3濃度5x10-6 M(θ=0.2)&濃度3x10-6 M(θ=0.1 70
3.2.5.4反應趨勢圖74
四、結論78
五、參考資料81
六、附錄86
1.Demirel, G.; Usta, H.; Yilmaz, M.; Celik, M.; Alidagi, H. A.; Buyukserin, F., Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. Journal of Materials Chemistry C 2018, 6 (20), 5314-5335.
2.Suh, J. S.; Moskovits, M., Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. Journal of the American Chemical Society 1986, 108 (16), 4711-4718.
3.daFonseca, B. G.; Costa, L. A. S.; Sant'Ana, A. C., Insights of adsorption mechanisms of Trp-peptides on plasmonic surfaces by SERS. Spectrochim Acta A Mol Biomol Spectrosc 2018, 190, 383-391.
4.Podstawka, E.; Ozaki, Y.; Proniewicz, L. M., Adsorption of S–S Containing Proteins on a Colloidal Silver Surface Studied by Surface-Enhanced Raman Spectroscopy. Applied Spectroscopy 2004, 58 (10), 1147-1156.
5.Tahir, M. A.; Dina, N. E.; Cheng, H.; Valev, V. K.; Zhang, L., Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale 2021, 13 (27), 11593-11634.
6.Lu, Y.; Mao, J.; Wang, Z.; Qin, Y.; Zhou, J., Facile Synthesis of Porous Hexapod Ag@AgCl Dual Catalysts for In Situ SERS Monitoring of 4-Nitrothiophenol Reduction. Catalysts 2020, 10, 746.
7.Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-L., Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports 2013, 3 (1), 2997.
8.Yang, Y.; Teng, F.; Yu, L.; Liu, Y.; Song, P.; Xia, L., Isomerization of p,p′-Diiodoazobenzene Controlled by the Surface Plasmon-Assisted Reaction. ACS Omega 2019, 4 (4), 7076-7081.
9.Almohammed, S.; Tade Barwich, S.; Mitchell, A. K.; Rodriguez, B. J.; Rice, J. H., Enhanced photocatalysis and biomolecular sensing with field-activated nanotube-nanoparticle templates. Nature Communications 2019, 10 (1), 2496.
10.Schlücker, S.; Xie, W., Surface-enhanced Raman Spectroscopic Detection of Molecular Chemo- and Plasmo-Catalysis on Noble Metal Nanoparticles. Chemical Communications 2018, 54.
11.Mosier-Boss, P. A., Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7 (6).
12.Lin, T.-H.; Lin, C.-W.; Liu, H.-H.; Sheu, J.-T.; Hung, W.-H., Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chemical Communications 2011, 47 (7), 2044-2046.
13.郭珊綺. 樹狀貴金屬的製備及其在表面增顯拉曼散射的應用. 東海大學, 台中市, 2015.
14.Arihara, K.; Ariga, T.; Takashima, N.; Arihara, K.; Okajima, T.; Kitamura, F.; Tokuda, K.; Ohsaka, T., Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates. Physical Chemistry Chemical Physics 2003, 5 (17), 3758-3761.
15.陳玉美. 銅修飾樹狀金應用於亞硝酸離子電化學量測. 東海大學, 台中市, 2018.
16.Vendamani, V. S.; Rao, S. V. S. N.; Pathak, A. P.; Soma, V. R., Silicon Nanostructures for Molecular Sensing: A Review. ACS Applied Nano Materials 2022, 5 (4), 4550-4582.
17.Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
18.Fasolato, C., Traditional Raman and SERS: Fundamentals and State of the Art. In Surface Enhanced Raman Spectroscopy for Biophysical Applications: Using Plasmonic Nanoparticle Assemblies, Fasolato, C., Ed. Springer International Publishing: Cham, 2018; pp 9-56.
19.Siddhanta, S.; Narayana, C., Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing Invited Review Article. Nanomaterials and Nanotechnology 2012, 2.
20.Sun, M.; Xu, H., A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 2012, 8 (18), 2777-86.
21.Dong, B.; Fang, Y.; Chen, X.; Xu, H.; Sun, M., Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Films. Langmuir 2011, 27 (17), 10677-10682.
22.Choudhary, Y. S.; Jothi, L.; Nageswaran, G., Chapter 2 - Electrochemical Characterization. In Spectroscopic Methods for Nanomaterials Characterization, Thomas, S.; Thomas, R.; Zachariah, A. K.; Mishra, R. K., Eds. Elsevier: 2017; pp 19-54.
23.Nnamchi, P. S.; Obayi, C. S., Chapter 4 - Electrochemical Characterization of Nanomaterials. In Characterization of Nanomaterials, Mohan Bhagyaraj, S.; Oluwafemi, O. S.; Kalarikkal, N.; Thomas, S., Eds. Woodhead Publishing: 2018; pp 103-127.
24.González-López, A.; Fernández Abedul, M. T., Chapter 9 - Electrochemical detection of melatonin in a flow injection analysis system. In Laboratory Methods in Dynamic Electroanalysis, Fernandez Abedul, M. T., Ed. Elsevier: 2020; pp 85-97.
25.Bhatt, V., Chapter 4 - Thermodynamics and Kinetics of Complex Formation. In Essentials of Coordination Chemistry, Bhatt, V., Ed. Academic Press: 2016; pp 111-137.
26.Kecili, R.; Hussain, C. M., Chapter 4 - Mechanism of Adsorption on Nanomaterials. In Nanomaterials in Chromatography, Hussain, C. M., Ed. Elsevier: 2018; pp 89-115.
27.Rackley, S. A., Chapter 7 - Adsorption Capture Systems. In Carbon Capture and Storage, Rackley, S. A., Ed. Butterworth-Heinemann: Boston, 2010; pp 133-157.
28.Balakrishnan, D.; Lamblin, G.; Thomann, J. S.; Guillot, J.; Duday, D.; van den Berg, A.; Olthuis, W.; Pascual-García, C., Influence of polymerisation on the reversibility of low-energy proton exchange reactions by Para-Aminothiolphenol. Sci Rep 2017, 7 (1), 15401.
29.Handa, S.; Yu, Y.; Futamata, M., Adsorbed state of p-mercaptobenzoic acid on silver nanoparticles. Vibrational Spectroscopy 2014, 72.
30.Radić, N.; Prkić, A., Historical remarks on the Henderson-Hasselbalch equation: its advantages and limitations and a novel approach for exact pH calculation in buffer region. Reviews in Analytical Chemistry 2012, 31 (2), 93-98.
31.Hills, A. G., pH and the Henderson-Hasselbalch equation. The American Journal of Medicine 1973, 55 (2), 131-133.
32.Zhang, Y.; Hu, Y.; Li, G.; Zhang, R., A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchimica Acta 2019, 186 (7), 477.
33.Pal, S.; Paul, S.; Chattopadhyay, A., Enhanced solid-state plasmon catalyzed oxidation and SERS signal in the presence of transition metal cations at the surface of gold nanostructures. Physical Chemistry Chemical Physics 2021, 23 (38), 21808-21816.
34.Gabudean, A. M.; Biro, D.; Astilean, S., Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods. Journal of Molecular Structure 2011, 993 (1), 420-424.
35.Sun, M.; Huang, Y.; Xia, L.; Chen, X.; Xu, H., The pH-Controlled Plasmon-Assisted Surface Photocatalysis Reaction of 4-Aminothiophenol to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Colloids. The Journal of Physical Chemistry C 2011, 115 (19), 9629-9636.
36.Song, W.; Querebillo, C. J.; Götz, R.; Katz, S.; Kuhlmann, U.; Gernert, U.; Weidinger, I. M.; Hildebrandt, P., Reversible light-dependent molecular switches on Ag/AgCl nanostructures. Nanoscale 2017, 9 (24), 8380-8387.
37.Koetz, J., The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance. Nanomaterials 2020, 10 (11).
38.Cao, M.; Zhou, L.; Xu, X.; Cheng, S.; Yao, J.-L.; Fan, L.-J., Galvanic replacement approach for bifunctional polyacrylonitrile/Ag–M (M = Au or Pd) nanofibers as SERS-active substrates for monitoring catalytic reactions. Journal of Materials Chemistry A 2013, 1 (31), 8942-8949.
39.Yang, J.; Wang, X.-Y.; Zhou, L.; Lu, F.; Cai, N.; Li, J.-M., Highly sensitive SERS monitoring of catalytic reaction by bifunctional Ag-Pd triangular nanoplates. Journal of Saudi Chemical Society 2019, 23 (7), 887-895.
40.Du, P.; Zhang, X.; Yin, H.; Zhao, Y.; Liu, L.; Wu, Z.; Xu, H., In situ surface-enhanced Raman scattering monitoring of reduction of 4-nitrothiophenol on bifunctional metallic nanostructure. Japanese Journal of Applied Physics 2018, 57 (3), 030308.
41.Zhang, J.; Winget, S. A.; Wu, Y.; Su, D.; Sun, X.; Xie, Z.-X.; Qin, D., Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy. ACS Nano 2016, 10 (2), 2607-2616.
42.Bizzarri, M. S. P. A. R.; Cannistraro, M. S. P. S., SERS detection of thrombin by protein recognition using functionalized gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3 (4), 306-310.
43.Gao, R.; Song, X.; Zhan, C.; Weng, C.; Cheng, S.; Guo, K.; Ma, N.; Chang, H.; Guo, Z.; Luo, L.-B.; Yu, L., Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sensors and Actuators B: Chemical 2020, 314, 128081.
44.張家瑜. 利用表面增顯拉曼研究半胱胺酸於樹狀銀電極表面的吸附行為與偶合反應. 東海大學, 台中市, 2020.
45.謝云靜. 表面修飾樹狀金電極及其SERS應用. 國立臺灣師範大學, 台北市, 2014.
46.Yang, T.; Xu, S.; Ren, S.; Yin, L.; Jiang, Y.; Liu, D.; Yin, F.; Zhao, H., A facile and “green” chemistry method of synthesis of Micro-scale noble metals (Au, Ag, Cu). IOP Conference Series: Materials Science and Engineering 2018, 452, 022120.

電子全文 電子全文(網際網路公開日期:20270802)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top