跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪群泰
研究生(外文):HUNG, CHUN-TAI
論文名稱:使用掌性亞磺醯胺親核性試劑進行鈀/布氏酸催化的 非鏡像選擇性分子內烯丙基取代反應
論文名稱(外文):Palladium/Brønsted-Acid-Catalyzed Diastereoselective Intramolecular Allylic Substitution with Chiral Sulfinamides as Nucleophiles
指導教授:蔡政哲蔡政哲引用關係
指導教授(外文):TSAI, CHENG-CHE
口試委員:韓政良吳彥谷廖軒宏
口試委員(外文):HAN, JENG-LIANGWU, YEN-KULIAO, HSUAN-HUNG
口試日期:2022-07-18
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:227
中文關鍵詞:掌性亞磺醯胺非鏡像選擇性分子內烯丙基取代反應
外文關鍵詞:Chiral SulfinamidesDiastereoselective Intramolecular Allylic Substitution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文報導使用掌性亞磺醯胺為親核性試劑進行分子內烯丙醇取代反應的非鏡像選擇性環化反應。
我們從市售的藥品經由 4 步合成反應獲得用於環化反應的起始物 CTH-4 化合物。
我們目標是使用鈀與布氏酸進行不對稱催化反應,其中掌性輔助基用來控制碳-氮鍵立體中的生成。
我們篩選了化合物 CTH-4a 的環化條件,發現在 10% Pd(PPh3)4 和 10% (PhO)2PO2H 為最佳條件。該反應條下得到掌性異吲哚啉產物, 55%分離產率和4.6:1 的非鏡像選擇性比。
最後,我們測試測試異吲哚啉產物結構中的分支型乙烯基團對立體選擇性的影響,在起始物 CTH-4a 的 8 號位置上引入不同的基團導致環化產物的形成,產率27–81%以及 3.2:1 至 14.1:1 的非鏡像選擇性比。

This thesis reports diastereoselective cyclization with chiral sulfinamides as
nucleophiles via intramolecular substitution of allylic alcohols. We obtained substrates CTH-4 for the cyclization reaction via a 4-step synthetic sequence from commercially available compounds. We aimed to use palladium and Brønsted acid to catalyzed the asymmetric reaction, in which the chiral auxiliary is utilized for the stereocontrol of carbon-nitrogen bond formation.
We screened the reaction condition for the cyclization of compound CTH-4a, and
found 10% Pd(PPh3)4 and 10% (PhO)2PO2H as the optimal condition. The reaction
condition afforded chiral isoindoline product with a isolated yield of 55% and a
diastereomeric ratio of 4.6:1.
Finally, we tested the effect of branched vinyl groups in the isoindoline product on stereoselectivity. Introduction of different groups at position 8 in the substrate CTH-4 led to the formation of cyclized product with yields of 27–81% and diastereomeric ratios of 3.2:1 to 14.1:1
謝誌......................................................................I
摘要......................................................................II
Abstract.................................................................III
目錄.....................................................................IV
表目錄....................................................................V
圖目錄....................................................................VI
流程目錄..................................................................VII
縮寫用語對照表.............................................................VIII
第一章、緒論...............................................................1
1-1 前言..................................................................1
1-2 掌性第三丁基亞磺醯胺(t-Butyl sulfinamide).............................2
1-3 辻-特羅斯特反應(Tsuji-Trost Reaction) .................................9
1-4 研究動機..............................................................14
第二章、結果與討論.........................................................15
2-1 化合物 CTH-1~CTH-4 的合成 ............................................15
2-2 合成異吲哚啉骨架之優化條件探討 .........................................20
2-3 探討異吲哚啉產物中分支型取代基對立體選擇性的影響.........................22
2-4 異吲哚啉骨架的應用 ...................................................25
2-5 可能的反應機制........................................................26
第三章、結論..............................................................27
第四章、實驗步驟與光譜數據.................................................28
4-1 一般實驗方法 .........................................................28
4-2 實驗步驟與光譜數據 ....................................................29
第五章、參考文獻...........................................................62
附錄 1:氫核磁共振光譜、碳核磁共振光譜及高效率液相層析圖.......................66
附錄目錄..................................................................67

1. (a) Kung, P.-P.; Huang, B.; Zhang, G.; Zhou, J. Z.; Wang, J.; Digits, J. A.; Skaptason, J.; Yamazaki, S.; Neul, D.; Zientek, M.; Elleraas, J.; Mehta, P.; Yin, M.-J.; ickey, M. J.; Gajiwala, K. S.; Rodgers, C.; Davies, J. F.; Gehring, M. R. Dihydroxyphenylisoindoline Amides as Orally Bioavailable Inhibitors of the Heat Shock Protein 90 (Hsp90) Molecular Chaperone. J. Med. Chem. 2010, 53, 1, 499–503; (b) Luckhurst, C. A.; Stein, L. A.; Furber, M.; Webb, N.; Ratcliffe, M. J.; Allenby, G.; Botterell, G.; Tomlinson, W.; Martin, B.; Walding, A. Discovery of isoindoline and tetrahydroisoquinoline derivatives as potent, selective PPARδ agonists. Bioorg. Med. Chem. Lett. 2011, 21, 1, 492-496; (c) Lin, H.; Long, J. Z.; Roche, A. M.; Svensson, K. J.; Dou, F. Y.; Chang, M. R.; Strutzenberg, T.; Ruiz, C.; Cameron, M. D.; Novick, S. J.; Berdan, C. A.; Louie, S. M.; Nomura, D. K.; Spiegelman, B. M.; Griffin, P. R.; Kamenecka, T. M. Discovery of Hydrolysis-Resistant Isoindoline N-Acyl Amino Acid Analogues that Stimulate Mitochondrial Respiration. J. Med. Chem. 2018, 61, 7, 3224–3230; (d) Narjes, F.; Llinas, A.; Berg, S. V.; Jirholt, J.; Lever, S.; Pehrson, R.; Collins, M.; Malmberg, A.; Svanberg, P.; Xue, Y.; Olsson, R. I.; Malmberg, J.; Hughes, G.; Hossain, N.; Grindebacke, H.; Leffler, A.; Krutrök, N.; Bäck, E.; Ramnegård, M.; Lepistö, M.; Thunberg, L.; Aagaard, A.; McPheat, J.; Hansson, E. L.; Chen, R.; Xiong, Y.; Hansson, T. G. AZD0284, a Potent, Selective, and Orally Bioavailable Inverse Agonist of Retinoic Acid Receptor-Related Orphan Receptor C2. J. Med.
Chem. 2021, 64, 18, 13807–13829.

2. (a) Thapa, P.; Corral, E.; Sardar, S.; Pierce, B. S.; Foss, F. W. Isoindolinone Synthesis: Selective Dioxane-Mediated Aerobic Oxidation of Isoindolines. J. Org. Chem. 2019, 84, 2, 1025–1034; (b) Clary, K. N.; Parvez, M.; Back, T. G. Org. Preparation of 1-aryl-substituted isoindoline derivatives by sequential Morita–Baylis–Hillman and intramolecular Diels–Alder reactions. Org. Biomol. Chem. 2009, 7, 1226-1230; (c) Thadkapally, S.; K. Farshadfar,; Drew, M. A.; Richardson, C.; Ariafard, A.; Pyne, S. G.; Hyland, C. J. T. Rhodium-catalysed tetradehydroDiels–Alder reactions of enediynes via a rhodium-stabilized cyclic allene. Chem. Sci. 2020, 11, 10945-10950.

3. (a) Takizawa, S.; Sako, M.; Abozeid, M. A.; Kishi, K.; Wathsala, H. D. P.; Hirata, S.; Murai, K.; Fujioka, H.; Sasai, H. Org. Lett. 2017, 19, 19, 5426–5429; (b) Guo, W.; Zhang, Q.; Cao, Y.; Cai, K.; Zhang, S.; Chai, Y. Environmentally benign access to isoindolinones: synthesis, separation and resource recycling. Green Chem. 2020, 22, 2873-2878; (c) Speck, K.; Magauer, T. The chemistry of isoindole natural products. J. Org. Chem. 2013, 9, 2048–2078.

4. Robak, M. T.; Herbage, M. A.; Ellman, J. A. Synthesis and Applications of tertButanesulfinamide. Chem. Rev. 2010, 110, 6, 3600–3740; (a) Cogan, D. A.; Liu,
G.; Ellman, J. Asymmetric Synthesis of Chiral Amines by Highly Diastereoselective 1,2-Additions of Organometallic Reagents to N-tertButanesulfinyl Imines. Tetrahedron. 1999, 55, 8883-8904; (b) N. Plobeck, D. Powell. Asymmetric synthesis of diarylmethylamines by diastereoselective addition of organometallic reagents to chiral N-tertbutanesulfinimines: switchover of diastereofacial selectivity. Tetrahedron Asymmetry. 2002, 13, 303–310; (c) Colpaert, F.; Mangelinckx, S.; Verniest, G.; De
Kimpe, N. Asymmetric Synthesis of r-Alkylated N-Sulfinyl Imidates as New Chiral Building Blocks. J. Org. Chem. 2009, 74, 3792– 3797; (d) Kochi, T.; Tang,
T. P.; Ellman, J. A. Development and Application of a New General Method for the Asymmetric Synthesis of syn- and anti-1,3-Amino Alcohols. J. Am. Chem.
Soc. 2003, 125, 11276.

5. (a) Jolly, C. S.; Kochanowski, E.; Dodd, C. J.; Post, S. J.; Hill, H. M.; Turlington, M. Diastereoselective Synthesis of Terminal Bromo-Substituted Propargylamines
via Generation of Lithium Bromoacetylide and Addition to Chiral N-tertButanesulfinyl Aldimines. J. Org. Chem. 2021, 86, 2667−2681; (b) Reddy, A. A.;
Prasad, K. R. Addition of the Lithium Anion of Diphenylmethanol Methyl/Methoxymethyl Ether to Nonracemic Sulfinimines: Two-Step Asymmetric Synthesis of Diphenylprolinol Methyl Ether and Chiral (Diphenylmethoxymethyl)amines. J. Org. Chem. 2018, 83, 10776−10785; (c) Reddy, L. R.; Kotturi, S.; Waman, Y.; Patel, C.; Danidharia, M.; Shenoy, R. T. Asymmetric Synthesis of α-(Diarylmethyl) Alkyl Amines through Regioselective Lithiation of α-Diarylmethanes and the Diastereoselective Addition to Ellman’s Imines. J. Org. Chem. 2018, 83, 6573−6579; (d) Reddy, L. R.; Kotturi, S.; Shenoy, R.; Nalivela, K. S.; Patel, C.; Raval, P.; Zalavadiya, V. Umpolung Synthesis of Vicinal Diamines: Diastereoselective Addition of 2-Azaallyl Anions to Davis−Ellman’s Imines. Org. Lett. 2018, 20, 5423−5426.

6. (a) Huang, W.; Yao, Y.; Xu, Y. J.; Lu, C. D. Diastereoselective α-Fluorination of N-tert-Butanesulfinyl Imidates. J. Org. Chem. 2018, 83, 14777−14785; (b) Niu, S. T.; Liu, H.; Xu, Y. J.; Lu, C. D. Diastereoselective α-Sulfenylation of N-tertButanesulfinyl Imidates. J. Org. Chem. 2018, 83, 10580−10588; (c) Ma, P. J.; Liu, H.; Xu, Y. J.; Aisa, H. A.; Lu, C. D. Diastereoselective α-Hydroxylation of N-tertButanesulfinyl Imidates and N-tert-Butanesulfinyl Amidines with Molecular Oxygen. Org. Lett. 2018, 20, 1236−1239; (d) Ma, P. J.; Liu, H.; Lu, C. D.; Xu, Y. J. Diastereoselective Electrophilic α-Hydroxyamination of N-tertButanesulfinyl Imidates. Org. Lett. 2017, 19, 670−673; (e) Li, C. T.; Liu, H.; Xu, Y. J.; Lu, C. D. Aldol Reaction of N-tert-Butanesulfinyl Imidates under Basic Conditions for Diastereoselective Synthesis of anti-Aldols. J. Org. Chem. 2017, 82, 11253−11261.

7. Redford, J. E.; McDonald, R. I.; Rigsby, M. L.; Wiensch, J. D.; Stahl, S. S. Stereoselective Synthesis of cis-2,5-Disubstituted Pyrrolidines via Wacker-Type Aerobic Oxidative Cyclization of Alkenes with tert-Butanesulfinamide Nucleophiles. Org. Lett. 2012, 14, 5, 1242–1245.

8. Fustero, S.; Herrera, L.; Lázaro, R.; Rodríguez, E.; Maestro, M. A.; Mateu, N.; Barrio, P. Base-Dependent Stereodivergent Intramolecular Aza-Michael Reaction: Asymmetric Synthesis of 1,3-Disubstituted Isoindolines. Chem. Eur. J. 2013, 19, 35, 11776-11785.

9. Zhang, R.; Sun, M.; Yan, Q.; Lin, X.; Li, X.; Fang, X.; Sung, H. H. Y.; Williams, I. D.; Sun, J. Asymmetric Synthesis of Pyrrolidines via Oxetane Desymmetrization. Org. Lett. 2022, 24, 12, 2359–2364.

10. (a) Pàmies, O.; Margalef, J.; Cañellas, S.; James, J.; Judge, E.; Guiry, P. J.; Moberg, C.; Bäckvall, J.-E.; Pfaltz, A.; Pericàs, M. A.; Diéguez, M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem. Rev. 2021, 121, 8, 4373–4505; (b) Butt, N. A.; Zhang, W. Transition Metal-Catalyzed Allylic Substitution Reactions with Unactivated Allylic Substrates. Chem. Soc. Rev. 2015, 44, 7929−7967. (c) Sundararaju, B.; Achard, M.; Bruneau, C. Transition Metal Catalyzed Nucleophilic Allylic Substitution: Activation of Allylic Alcohols via π-Allylic Species. Chem. Soc. Rev. 2012, 41, 4467−4483.

11. (a) Jhang, Y.-J.; Chang, C.-Y.; Lin, Y.-H.; Lee, C.-C.; Wu, Y.-K. Palladiumcatalyzed substitution of allylic alcohols with sulfinate salts: A synthesis of bicalutamide. Tetrahedron Lett. 2021, 73, 153060; (b) Chang, C.-Y.; Lin, Y.-H.; Wu, Y.-K. Palladium-catalyzed N1-selective allylation of indoles with allylic alcohols promoted by titanium tetraisopropoxide. Chem. Commun. 2019, 55, 1116; (c) Chang, C.-Y.; Wu, Y.-K. Palladium-Catalyzed α-Allylation of Secondary Nitroalkanes with Allylic Alcohols and Strategic Exploitation of Seebach’s Reagent for the Total Synthesis of (±)-Adalinine. J. Org. Chem. 2018, 83, 6217−6224.

12. (a) Jiang, G.; List, B. Direct Asymmetric α-Allylation of Aldehydes with Simple Allylic Alcohols Enabled by the Concerted Action of Three Different Catalysts. Angew. Chem. Int. Ed. 2011, 50, 9471; (b) Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. Pd-Catalyzed Asymmetric Allylic Alkylation of Pyrazol-5-ones with Allylic Alcohols: The Role of the Chiral Phosphoric Acid in C–O Bond Cleavage and tereocontrol. J. Am. Chem. Soc. 2013, 135, 25, 9255–9258.

13. Banerjee, D.; Junge, K.; Beller, M. Cooperative Catalysis by Palladium and a Chiral Phosphoric Acid: Enantioselective Amination of Racemic Allylic Alcohols. Angew. Chem. Int. Ed. 2014, 53, 48, 13049-13053.

14. Tsai, C.-C.; Sandford, C.; Wu, T.; Chen, B.; Sigman, M. S.; Toste, F. D. Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angew. Chem. Int. Ed. 2020, 59, 34, 14647-14655.

15. Zhu, C.; Yang, B.; Backvall, J.-E. Highly Selective Cascade C−C Bond Formation via Palladium−Catalyzed Oxidative Carbonylation−Carbocyclization−Carbonylation−Alkynylation of Enallenes. J. Am. Chem. Soc. 2015, 137, 11868−11871.5

16. Li, X.-H.; Zheng, B.-H.; Ding, C.-H.; Hou, X.-L. Enantioselective Synthesis of 2,3-Disubstituted Indanones via Pd-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Ketones. Org. Lett. 2013, 15, 6086−6089.

17. Yan, K.; He, M.; Li, J.; He, H.; Lai, R.; Luo, Y.; Guo, L.; Wu, Y. : Chem. Commun. 2020, 56, 14287−14290.

18. (a) Holtzman, B. S.; Roberts, E. T.; Caminiti, N. S.; Fox, J. A.; Goodstein, M. B.; Hill, S. A.; Jia, Z. B.; Leibler, I. N. M.; Martini, M. L.; Mendolia, G. M.; Nodder, S. B.; Costanza-Robinson, M. S.; Bunt, R. C. Ligand and Base Additive Effects on the Reversibility of Nucleophilic Addition in Palladium-Catalyzed Allylic Aminations Monitored by Nucleophile Crossover. Tetrahedron Lett. 2017, 58,
432−436. (b) Caminiti, N. S.; Goodstein, M. B.; Leibler, I. N.-M.; Holtzman, B. S.; Jia, Z. B.; Martini, M. L.; Nelson, N. C.; Bunt, R. C. Reversible Nucleophilic Addition Can Lower the Observed Enantioselectivity in Palladium-Catalyzed Allylic Amination Reactions with a Variety of Chiral Ligands. Tetrahedron Lett. 2015, 56, 5445− 5448.

19. Morán-Ramallal, R.; Gotor-Fernández, V.; Laborda, P.; Sayago, F. J.; Cativiela, C.; Gotor, V. Dynamic Kinetic Resolution of 1,3-Dihydro-2h-Isoindole-1-Carboxylic Acid Methyl Ester: Asymmetric Transformations toward Isoindoline Carbamates. Org. Lett. 2012, 14, 1696– 1699.

20. Reddy, R. S.; Kiran, I. N. C.; Sudalai, A. CN-assisted oxidative cyclization of cyano cinnamates and styrene derivatives: a facile entry to 3-substituted chiral phthalides. Org. Biomol. Chem. 2012, 10, 3655-3661.

21. Li, X. H.; Zheng, B. H.; Ding, C. H.; Hou, X. L. Enantioselective Synthesis of 2,3-Disubstituted Indanones via Pd-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Ketones. Org. Lett. 2013, 15, 6086−6089.

電子全文 電子全文(網際網路公開日期:20270801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top