跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林子勛
研究生(外文):LIN, ZIH-SYUN
論文名稱:雙功能五氧化二鈮用於電催化還原苯草醚和光催化降解亞甲藍之研究
論文名稱(外文):Bifunctional Niobium (V) Oxide for Electrocatalytic Reduction of Aclonifen and Photocatalytic Degradation of Methylene Blue
指導教授:莊旻傑
指導教授(外文):CHUANG, MIN-CHIEH
口試委員:黃景帆翁于晴
口試委員(外文):HUANG, JING-FANGWENG, YU-CHING
口試日期:2022-07-11
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:五氧化二鈮苯草醚電催化還原亞甲藍光催化降解
外文關鍵詞:Niobium (V) OxideAclonifenElectrocatalytic ReductionMethylene BluePhotocatalytic Degradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈮基氧化物已被證實用做降低汙染、染料脫色甚至生質能燃料上是一種有效的催化劑。在此研究中我們呈現了一鍋式(one-pot)合成五氧化二鈮(niobium (V) oxide, Nb2O5),以此做為對催化苯草醚還原以及亞甲藍降解是有效的。合成後的五氧化二鈮使用傅利葉轉換紅外線光譜儀、X光繞射儀和X光光電子能譜儀等儀器鑑定,判明合成的五氧化二鈮分子式。掃描式電子顯微鏡的影像揭露了平均 600 nm 聚集的顆粒中有小於 100 nm 粒徑大小的微粒。此催化劑我們用來製造五氧化二鈮修飾的氧化銦錫導電玻璃(indium tin oxide, ITO)電極,當做試片用於電催化還原苯草醚,在中性的環境下電位落在 −0.85 V。苯草醚(2-chloro-6-nitro-3-phenoxyaniline, ACF)為一種二苯醚除草劑,常用於控制一般或闊葉雜草,但對於環境會造成長時間持續破壞,電分析方法是追蹤其在食物鏈、水源中的殘留有效的策略,以防止苯草醚的擴散。伏安法的研究揭露了此還原峰會隨著 pH 值往負電位偏移 46.46 mV/pH。我們優化了催化劑負載量和預處理時間分別為 50 μg 和 3 分鐘,能夠使其表現出最大還原電流。我們也研究了動力學參數,初步認為是擴散控制(峰電流與掃描速率平方根成正比)與單電子轉移相關的異質(heterogeneous)反應。除此之外,合成後的五氧化二鈮具有半導體的屬性,因此我們將其用做亞甲藍的光催化降解。UV-B 的照射能給予五氧化二鈮能量使電子電洞對分離,使亞甲藍轉換成無色的亞甲藍分子甚至是無害的無機小分子,達成亞甲藍脫色。根據這些結果,五氧化二鈮被證明對除草劑有靈敏的偵測能力且對於染料汙染具有有效的修復。
Niobium-based oxides have been proven to be effective catalysts for pollution abatement, dye decolorization, and conversion of biomass into fuels. In this study we present a one-pot synthesis of niobium (V) oxide (Nb2O5) which efficiently catalyzes reduction of aclonifen and degradation of methylene blue. The resulting Nb2O5 was characterized by FTIR, XRD, and XPS measurements, identifying the formula of niobium pentoxide. The SEM images revealed the grain size smaller than 100 nm in the ca. 600 nm particles (size in average). Such the catalyst was utilized to fabricate an Nb2O5-functionalized indium tin oxide (ITO) electrode for electrocatalytic reduction of aclonifen (ACF) at the potential centered at −0.85 V in neutral solutions. Aclonifen (2-chloro-6-nitro-3-phenoxyaniline), a diphenyl ether herbicide, is commonly used to control grass and broad-leaved weeds yet remains its toxicity in the environment for a long period. Electroanalytical method could be an effective strategy against aclonifen spread by tracing its residue in the food chain and water resource. The voltammetric study revealed that the reduction wave shifted cathodically at 46.46 mV/pH. The catalyst loading and precondition time were optimized to be 50 g and 3-min, respectively, for exhibiting the greatest reduction current. Kinetic study was also conducted, suggesting a diffusion-determining (ip is proportional to 1/2) heterogeneous reaction process in connection to one-electron transfer. In addition, the Nb2O5 synthesized was also utilized for photocatalytic degradation of methylene blue (MeB), by virtue of its properties of semiconductor. UVB irradiation caused electron-hole separation of Nb2O5 and subsequently led to conversion of MeB to colorless leuco-methylene blue, achieving decolorization of methylene blue. Per the results, the as-prepared Nb2O5 is a promising catalyst effective to sensitive detection of herbicide and remediation of dye pollutants.
目錄
謝誌 I
中文摘要 II
Abstract III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 五氧化二鈮 (Niobium(V) oxide) 1
1.1.1 介紹 1
1.1.2 晶型、特性 1
1.1.3 各式構型合成方法、應用 5
1.2 苯草醚 (Aclonifen, ACF) 7
1.2.1 介紹 7
1.2.2 偵測方法及偵測基材 9
1.3 光催化劑降解有機污染物之機制 10
1.4 亞甲藍 (methylene blue, MeB) 12
1.4.1 介紹 12
1.4.2 去除、降解方法及材料 12
1.4.3 光催化機制 17
1.4.4 光降解機制 17
1.5 動機與研究論文架構 18
1.5.1 研究動機 18
1.5.2 研究目的 19
1.5.3 研究架構 19
第二章 材料與方法 20
2.1 藥品與試劑 20
2.2 實驗儀器與材料 21
2.3 合成五氧化二鈮 23
2.4 電極製備— 五氧化二鈮修飾電極 24
2.5 觸媒鑑定 25
2.5 電化學實驗方法及其他實驗條件 27
2.5.1 檢測苯草醚之電化學特徵峰 27
2.5.2 最佳化測試 29
2.5.3 電子轉移數及擴散係數 30
2.5.4 Mott-Schottky 31
2.6 光催化降解亞甲藍(Methylene blue) 32
2.6.1 實驗步驟及檢測亞甲藍降解 32
2.6.2 機制探討 33
第三章 結果與討論 34
3.1 粒徑、表面狀態分析 34
3.2 XRD 分析 37
3.3 FT-IR 分析 39
3.4 XPS 分析 41
3.5 能階分析 42
3.5.1 UV-DRS、UPS 分析 42
3.5.2 Mott-Schottky 分析 42
3.6 T-Nb2O5 催化還原苯草醚 44
3.7 最佳化測試 46
3.8 電子轉移數與擴散係數 48
3.9 苯草醚還原機制探討 50
3.10 塔菲爾斜率 (Tafel slope) 54
3.11 電化學活性表面積及粗糙度 56
3.12 電極重複使用性測試 58
3.10 光催化降解亞甲藍 60
3.11 初始亞甲藍濃度變化 62
3.12 催化劑負載量(loading)變化 63
3.13 pH 值變化 64
3.14 光強度變化 66
3.15 T-Nb2O5之可再用性 67
3.16 亞甲藍降解機制(scavenger) 68
第四章 結論 71
第五章 參考文獻列表 72


1.Zhao, Y.; Zhou, X.; Ye, L.; Chi Edman Tsang, S., Nanostructured Nb2O5 catalysts. Nano Rev. 2012, 3 (1), 17631.
2.Su, K.; Liu, H.; Gao, Z.; Fornasiero, P.; Wang, F., Nb2O5‐Based Photocatalysts. Adv. Sci. 2021, 8 (8), 2003156.
3.Dos Santos, A. J.; Batista, L. M. B.; Martínez-Huitle, C. A.; Alves, A. P. d. M.; Garcia-Segura, S., Niobium oxide catalysts as emerging material for textile wastewater reuse: Photocatalytic decolorization of azo dyes. Catalysts 2019, 9 (12), 1070.
4.Skrodczky, K.; Antunes, M. M.; Han, X.; Santangelo, S.; Scholz, G.; Valente, A. A.; Pinna, N.; Russo, P. A., Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts. Commun. Chem. 2019, 2 (1), 1-11.
5.Wang, Y.-D.; Yang, L.-F.; Zhou, Z.-L.; Li, Y.-F.; Wu, X.-H., Effects of calcining temperature on lattice constants and gas-sensing properties of Nb2O5. Mater. Lett. 2001, 49 (5), 277-281.
6.Mujawar, S.; Inamdar, A.; Patil, S.; Patil, P., Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ion 2006, 177 (37-38), 3333-3338.
7.Ahn, K.-S.; Kang, M.-S.; Lee, J.-K.; Shin, B.-C.; Lee, J.-W., Enhanced electron diffusion length of mesoporous Ti O 2 film by using Nb 2 O 5 energy barrier for dye-sensitized solar cells. Appl. Phys. Lett. 2006, 89 (1), 013103.
8.Kreissl, H. T.; Li, M. M.; Peng, Y.-K.; Nakagawa, K.; Hooper, T. J.; Hanna, J. V.; Shepherd, A.; Wu, T.-S.; Soo, Y.-L.; Tsang, S. E., Structural studies of bulk to nanosize niobium oxides with correlation to their acidity. J. Am. Chem. Soc. 2017, 139 (36), 12670-12680.
9.Corma, A., Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 1995, 95 (3), 559-614.
10.Zhu, J.; Gao, F.; Dong, L.; Yu, W.; Qi, L.; Wang, Z.; Dong, L.; Chen, Y., Studies on surface structure of MxOy/MoO3/CeO2 system (M= Ni, Cu, Fe) and its influence on SCR of NO by NH3. Appl. Catal. B 2010, 95 (1-2), 144-152.
11.Shishido, T.; Teramura, K.; Tanaka, T., Photo-induced electron transfer between a reactant molecule and semiconductor photocatalyst: in situ doping. Catal. Surv. from Asia 2011, 15 (4), 240-258.
12.Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T., Reaction mechanism of selective photooxidation of amines over niobium oxide: visible-light-induced electron transfer between adsorbed amine and Nb2O5. J. Phys. Chem. C 2013, 117 (1), 442-450.
13.Jia, Y.; Zhong, M.; Yang, F.; Liang, C.; Ren, H.; Hu, B.; Liu, Q.; Zhao, H.; Zhang, Y.; Zhao, Y., Theoretical and experimental study on exciton properties of TT-, T-, and H-Nb2O5. J. Phys. Chem. C 2020, 124 (28), 15066-15075.
14.Zhou, Y.; Qiu, Z.; Lü, M.; Zhang, A.; Ma, Q., Preparation and characterization of porous Nb2O5 nanoparticles. Mater. Res. Bull. 2008, 43 (6), 1363-1368.
15.Brayner, R.; Bozon-Verduraz, F., Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Phys. Chem. Chem. Phys. 2003, 5 (7), 1457-1466.
16.Ristić, M.; Popović, S.; Musić, S., Sol–gel synthesis and characterization of Nb2O5 powders. Mater. Lett. 2004, 58 (21), 2658-2663.
17.Li, Y.; Yan, S.; Yue, B.; Yang, W.; Xie, Z.; Chen, Q.; He, H., Selective catalytic hydration of ethylene oxide over niobium oxide supported on α-alumina. APPL CATAL A-GEN 2004, 272 (1-2), 305-310.
18.Uekawa, N.; Kudo, T.; Mori, F.; Wu, Y. J.; Kakegawa, K., Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. J. Colloid Interface Sci. 2003, 264 (2), 378-384.
19.Bayot, D. A.; Devillers, M. M., Molecular precursor route to bulk and silica-supported Nb2Mo3O14 using water-soluble oxo-oxalato complexes. Inorg. Chem. 2006, 45 (11), 4407-4412.
20.Saito, K.; Kudo, A., Controlled synthesis of TT phase niobium pentoxide nanowires showing enhanced photocatalytic properties. Bull. Chem. Soc. Jpn. 2009, 82 (8), 1030-1034.
21.Viet, A. L.; Reddy, M.; Jose, R.; Chowdari, B.; Ramakrishna, S., Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J. Phys. Chem. C 2010, 114 (1), 664-671.
22.Zhou, Y.; Qiu, Z.; Lü, M.; Zhang, A.; Ma, Q., Preparation and spectroscopic properties of Nb2O5 nanorods. J. Lumin. 2008, 128 (8), 1369-1372.
23.Luo, H.; Wei, M.; Wei, K.; Cho, S.-H., Synthesis of Nb 2 O 5 nanorods by a soft chemical process. J. Nanomater. 2009, 2009, 30.
24.Li, L.; Deng, J.; Chen, J.; Sun, X.; Yu, R.; Liu, G.; Xing, X., Wire structure and morphology transformation of niobium oxide and niobates by molten salt synthesis. Chem. Mater. 2009, 21 (7), 1207-1213.
25.Ong, G. K.; Saez Cabezas, C. A.; Dominguez, M. N.; Skjærvø, S. L.; Heo, S.; Milliron, D. J., Electrochromic niobium oxide nanorods. Chem. Mater. 2019, 32 (1), 468-475.
26.Pytlicek, Z.; Bendova, M.; Prasek, J.; Mozalev, A., On-chip sensor solution for hydrogen gas detection with the anodic niobium-oxide nanorod arrays. Sens. Actuators B Chem. 2019, 284, 723-735.
27.Yang, Z.-J.; Li, Y.-F.; Wu, Q.-B.; Ren, N.; Zhang, Y.-H.; Liu, Z.-P.; Tang, Y., Layered niobic acid with self-exfoliatable nanosheets and adjustable acidity for catalytic hydration of ethylene oxide. J Catal 2011, 280 (2), 247-254.
28.Wei, M.; Qi, Z.-m.; Ichihara, M.; Zhou, H., Synthesis of single-crystal niobium pentoxide nanobelts. Acta Mater. 2008, 56 (11), 2488-2494.
29.Lee, S.; Teshima, K.; Niina, Y.; Suzuki, S.; Yubuta, K.; Shishido, T.; Endo, M.; Oishi, S., Highly crystalline niobium oxide converted from flux-grown K 4 Nb 6 O 17 crystals. CrystEngComm 2009, 11 (11), 2326-2331.
30.Hashemzadeh, F.; Rahimi, R.; Gaffarinejad, A.; Jalalat, V.; Safapour, S., Photocatalytic treatment of wastewater containing Rhodamine B dye via Nb2O5 nanoparticles: effect of operational key parameters. Desalination Water Treat. 2015, 56 (1), 181-193.
31.Prado, A. G.; Bolzon, L. B.; Pedroso, C. P.; Moura, A. O.; Costa, L. L., Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl. Catal. B 2008, 82 (3-4), 219-224.
32.Sreethawong, T.; Ngamsinlapasathian, S.; Lim, S. H.; Yoshikawa, S., Investigation of thermal treatment effect on physicochemical and photocatalytic H2 production properties of mesoporous-assembled Nb2O5 nanoparticles synthesized via a surfactant-modified sol–gel method. Chem. Eng. J. 2013, 215, 322-330.
33.Saito, K.; Kudo, A., Diameter-dependent photocatalytic performance of niobium pentoxide nanowires. Dalton Trans. 2013, 42 (19), 6867-6872.
34.da Silva, G. T.; Nogueira, A. E.; Oliveira, J. A.; Torres, J. A.; Lopes, O. F.; Ribeiro, C., Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Appl. Catal. B 2019, 242, 349-357.
35.Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T., Selective amine oxidation using Nb2O5 photocatalyst and O2. ACS Catal. 2011, 1 (10), 1150-1153.
36.Ohuchi, T.; Miyatake, T.; Hitomi, Y.; Tanaka, T., Liquid phase photooxidation of alcohol over niobium oxide without solvents. Catal. Today 2007, 120 (2), 233-239.
37.İnam, R.; Çakmak, Z., A simple square wave voltammetric method for the determination of aclonifen herbicide. Anal. Methods 2013, 5 (13), 3314-3320.
38.Ibrahim, M.; Al-Magboul, K.; Kamal, M., Voltammetric determination of the insecticide buprofezin in soil and water. Anal. Chim. Acta 2001, 432 (1), 21-26.
39.Barbosa, P. F. P.; Vieira, E. G.; Cumba, L. R.; Paim, L. L.; Nakamura, A. P. R.; Andrade, R. D. A.; do Carmo, D. R., Voltammetric techniques for pesticides and herbicides detection-an overview. Int. J. Electrochem. Sci. 2019, 14, 3418-3433.
40.Kahlau, S.; Schröder, F.; Freigang, J.; Laber, B.; Lange, G.; Passon, D.; Kleeßen, S.; Lohse, M.; Schulz, A.; von Koskull‐Döring, P., Aclonifen targets solanesyl diphosphate synthase, representing a novel mode of action for herbicides. Pest Manag. Sci. 2020, 76 (10), 3377-3388.
41.Sun, B.; Chen, Y., A simple and rapid method for detection of paraquat in human plasma by high-performance liquid chromatography. Int. J. Clin. Exp. Med. 2015, 8 (10), 17067.
42.Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A. B.; Singh, N.; Singh, J., Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 2018, 16 (1), 211-237.
43.de Almeida, R. M.; Yonamine, M., Enzymatic-spectrophotometric determination of paraquat in urine samples: a method based on its toxic mechanism. Toxicol. Mech. Methods 2010, 20 (7), 424-427.
44.Abraham, D. A.; Vasantha, V. S., Hollow polypyrrole composite synthesis for detection of trace-level toxic herbicide. ACS Omega 2020, 5 (34), 21458-21467.
45.Du, H.; Xie, Y.; Wang, J., Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. Trends Analyt Chem 2021, 135, 116178.
46.Shetti, N. P.; Malode, S. J.; Vernekar, P. R.; Nayak, D. S.; Shetty, N. S.; Reddy, K. R.; Shukla, S. S.; Aminabhavi, T. M., Electro-sensing base for herbicide aclonifen at graphitic carbon nitride modified carbon electrode–Water and soil sample analysis. Microchem. J. 2019, 149, 103976.
47.Novotný, V.; Barek, J., A voltammetric technique using a modified carbon paste electrode for the determination of aclonifen. Ecol. Chem. Eng. 2015, 22 (3), 451.
48.Zaouak, A.; Matoussi, F.; Dachraoui, M., Electrochemical study of diphenyl ether derivatives used as herbicides. Int. j. electrochem. 2011, 2011.
49.Mutharani, B.; Ranganathan, P.; Chen, S.-M., Stimuli-enabled reversible switched aclonifen electrochemical sensor based on smart PNIPAM/PANI-Cu hybrid conducting microgel. Sens. Actuators B Chem. 2020, 304, 127232.
50.Novotný, V.; Barek, J., Voltammetric determination of Aclonifen at a silver amalgam electrode in drinking and river water. Ecol. Chem. Eng. 2017, 24 (2), 277.
51.Guziejewski, D.; Smarzewska, S.; Skowron, M.; Ciesielski, W.; Nosal-Wiercińska, A.; Skrzypek, S., Rapid and sensitive voltammetric determination of aclonifen in water samples. Acta Chim Slov 2015, 63 (1), 1-7.
52.Marcisz, K.; Karbarz, M.; Stojek, Z., Electrochemical chemo‐and biosensors based on microgels immobilized on electrode surface. J. Electrochem. Sci. Technol., e2100162.
53.Li, X.; Yu, J.; Jaroniec, M., Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45 (9), 2603-2636.
54.Ferrari-Lima, A.; Marques, R.; Gimenes, M.; Fernandes-Machado, N., Synthesis, characterisation and photocatalytic activity of N-doped TiO2–Nb2O5 mixed oxides. Catal. Today 2015, 254, 119-128.
55.Boruah, B.; Gupta, R.; Modak, J. M.; Madras, G., Enhanced photocatalysis and bacterial inhibition in Nb 2 O 5 via versatile doping with metals (Sr, Y, Zr, and Ag): a critical assessment. Nanoscale Adv. 2019, 1 (7), 2748-2760.
56.Karunakaran, C.; Dhanalakshmi, R., Selectivity in photocatalysis by particulate semiconductors. Cent. Eur. J. Chem. 2009, 7 (1), 134-137.
57.Yang, J.; Qiu, K., Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem. Eng. J. 2010, 165 (1), 209-217.
58.Sun, L.; Hu, D.; Zhang, Z.; Deng, X., Oxidative degradation of methylene blue via PDS-based advanced oxidation process using natural pyrite. Int. J. Environ. Res. Public Health 2019, 16 (23), 4773.
59.Anushree, C.; Philip, J., Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 193-204.
60.Abdelrahman, E. A.; Hegazey, R.; El-Azabawy, R. E., Efficient removal of methylene blue dye from aqueous media using Fe/Si, Cr/Si, Ni/Si, and Zn/Si amorphous novel adsorbents. J. Mater. Res. Technol. 2019, 8 (6), 5301-5313.
61.Lebron, Y. A. R.; Moreira, V. R.; de Souza Santos, L. V., Biosorption of methylene blue and eriochrome black T onto the brown macroalgae Fucus vesiculosus: equilibrium, kinetics, thermodynamics and optimization. Environ. Technol. 2021, 42 (2), 279-297.
62.Wang, Y.; Peng, Q.; Akhtar, N.; Chen, X.; Huang, Y., Microporous carbon material from fish waste for removal of methylene blue from wastewater. Water Sci. Technol. 2020, 81 (6), 1180-1190.
63.Tara, N.; Siddiqui, S. I.; Rathi, G.; Chaudhry, S. A.; Asiri, A. M., Nano-engineered adsorbent for the removal of dyes from water: A review. Curr Anal Chem 2020, 16 (1), 14-40.
64.Crini, G.; Lichtfouse, E., Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 2019, 17 (1), 145-155.
65.Wang, Z.; Gao, M.; Li, X.; Ning, J.; Zhou, Z.; Li, G., Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins. Mater. Sci. Eng. C 2020, 108, 110196.
66.Imron, M. F.; Kurniawan, S. B.; Soegianto, A.; Wahyudianto, F. E., Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon 2019, 5 (8), e02206.
67.Bharti, V.; Vikrant, K.; Goswami, M.; Tiwari, H.; Sonwani, R. K.; Lee, J.; Tsang, D. C.; Kim, K.-H.; Saeed, M.; Kumar, S., Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ. Res. 2019, 171, 356-364.
68.Lau, Y.-Y.; Wong, Y.-S.; Teng, T.-T.; Morad, N.; Rafatullah, M.; Ong, S.-A., Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Adv. 2015, 5 (43), 34206-34215.
69.Tir, M.; Moulai-Mostefa, N.; Nedjhioui, M., Optimizing decolorization of methylene blue dye by electrocoagulation using Taguchi approach. Desalination Water Treat. 2015, 55 (10), 2705-2710.
70.Mahlum, J.; Pellitero, M. A.; Arroyo-Currás, N. y., Chemical equilibrium-based mechanism for the electrochemical reduction of DNA-bound methylene blue explains double redox waves in voltammetry. J. Phys. Chem. C 2021, 125 (17), 9038-9049.
71.El-Ashtoukhy, E.-S.; Fouad, Y., Liquid–liquid extraction of methylene blue dye from aqueous solutions using sodium dodecylbenzenesulfonate as an extractant. ALEX ENG J 2015, 54 (1), 77-81.
72.Parakala, S.; Moulik, S.; Sridhar, S., Effective separation of methylene blue dye from aqueous solutions by integration of micellar enhanced ultrafiltration with vacuum membrane distillation. Chem. Eng. J. 2019, 375, 122015.
73.Kim, S.; Yu, M.; Yoon, Y., Fouling and retention mechanisms of selected cationic and anionic dyes in a Ti3C2T x MXene-ultrafiltration hybrid system. ACS Appl. Mater. Interfaces 2020, 12 (14), 16557-16565.
74.Kong, G.; Pang, J.; Tang, Y.; Fan, L.; Sun, H.; Wang, R.; Feng, S.; Feng, Y.; Fan, W.; Kang, W., Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing. J. Mater. Chem. A 2019, 7 (42), 24301-24310.
75.García, M. C.; Mora, M.; Esquivel, D.; Foster, J. E.; Rodero, A.; Jiménez-Sanchidrián, C.; Romero-Salguero, F. J., Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye. Chemosphere 2017, 180, 239-246.
76.Athikoh, N.; Yulianto, E.; Kinandana, A. W.; Sasmita, E.; Sanjani, A. H.; Mustika, R. W.; Pratama, A. P.; Amalia, N. F.; Gunawan, G.; Nur, M., Reduction of Methylene Blue by Using Direct Continuous Ozone. Methods 2020, 10 (4).
77.Mohammed, H. A.; Khaleefa, S. A.; Basheer, M. I., Photolysis of Methylene Blue Dye Using an Advanced Oxidation Process (Ultraviolet Light and Hydrogen Peroxide). J. Eng. Sustain. Dev. 2021, 25 (1), 59-67.
78.Choquehuanca, A.; Ruiz-Montoya, J. G.; Gómez, A. L. R.-T., Discoloration of methylene blue at neutral pH by heterogeneous photo-Fenton-like reactions using crystalline and amorphous iron oxides. Open Chem. 2021, 19 (1), 1009-1020.
79.Arumugam, M.; Choi, M. Y., Effect of operational parameters on the degradation of methylene blue using visible light active BiVO4 photocatalyst. Bull Korean Chem Soc 2020, 41 (3), 304-309.
80.Vallejo, W.; Cantillo, A.; Díaz-Uribe, C., Methylene blue photodegradation under visible irradiation on Ag-Doped ZnO thin films. Int. J. Photoenergy 2020, 2020.
81.Sun, Y.; Cheng, S.; Lin, Z.; Yang, J.; Li, C.; Gu, R., Combination of plasma oxidation process with microbial fuel cell for mineralizing methylene blue with high energy efficiency. J. Hazard. Mater. 2020, 384, 121307.
82.Naresh Yadav, D.; Anand Kishore, K.; Saroj, D., A study on removal of methylene blue dye by photo catalysis integrated with nanofiltration using statistical and experimental approaches. Environ. Technol. 2021, 42 (19), 2968-2981.
83.Rao, M. P.; Anandan, S.; Suresh, S.; Asiri, A. M.; Wu, J. J., Surfactant assisted synthesis of copper oxide nanoparticles for photocatalytic degradation of methylene blue in the presence of visible light. Energy Environ. Focus 2015, 4 (3), 250-255.
84.Farrukh, M. A.; Thong, C.-K.; Adnan, R.; Kamarulzaman, M. A., Preparation and characterization of zinc oxide nanoflakes using anodization method and their photodegradation activity on methylene blue. Russ. J. Phys. Chem. 2012, 86 (13), 2041-2048.
85.Bhattacharjee, A.; Ahmaruzzaman, M.; Devi, T. B.; Nath, J., Photodegradation of methyl violet 6B and methylene blue using tin-oxide nanoparticles (synthesized via a green route). J. Photochem. Photobiol. A 2016, 325, 116-124.
86.Jimenez-Becerril, J.; Martinez-Hernandez, A.; Granados-Correa, F.; Zavala Arce, R. E., Methylene blue and 4-chlorophenol photodegradation using gamma-irradiated titanium oxide. J. Chem. Soc. Pak. 2013, 35 (1), 23.
87.Sanad, M. M.; Farahat, M. M.; El-Hout, S. I.; El-Sheikh, S. M., Preparation and characterization of magnetic photocatalyst from the banded iron formation for effective photodegradation of methylene blue under UV and visible illumination. J. Environ. Chem. Eng. 2021, 9 (2), 105127.
88.Wang, L.-r.; Hou, T.-t.; Xin, Y.; Zhu, W.-k.; Yu, S.-y.; Xie, Z.-c.; Liang, S.-q.; Wang, L.-b., Large-scale synthesis of porous Bi2O3 with oxygen vacancies for efficient photodegradation of methylene blue. Chinese J. Chem. Phys. 2020, 33 (4), 500.
89.Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A. H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L. A., Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 2022, 14 (2), 242.
90.Choi, J.; Suryanto, B. H.; Wang, D.; Du, H.-L.; Hodgetts, R. Y.; Ferrero Vallana, F. M.; MacFarlane, D. R.; Simonov, A. N., Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 2020, 11 (1), 1-10.
91.Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979, 101 (1), 19-28.
92.Bard, A. J.; Faulkner, L. R., Electrochemical methods: fundamentals and applications. 2nd ed., JOHN WILEY & SONS, INC., New York, 2001, p. 236..
93.Sarkar, A.; Karmakar, K.; Singh, A. K.; Mandal, K.; Khan, G. G., Surface functionalized H 2 Ti 3 O 7 nanowires engineered for visible-light photoswitching, electrochemical water splitting, and photocatalysis. Phys. Chem. Chem. Phys. 2016, 18 (38), 26900-26912.
94.Pieretti, E. F.; Manhabosco, S. M.; Dick, L. F.; Hinder, S.; Costa, I., Localized corrosion evaluation of the ASTM F139 stainless steel marked by laser using scanning vibrating electrode technique, X-ray photoelectron spectroscopy and Mott–Schottky techniques. Electrochim. Acta 2014, 124, 150-155.
95.Nico, C.; Monteiro, T.; Graça, M. P., Niobium oxides and niobates physical properties: Review and prospects. Prog. Mater. Sci. 2016, 80, 1-37.
96.Castro, D. C.; Cavalcante, R. P.; Jorge, J.; Martines, M. A.; Oliveira, L.; Casagrande, G. A.; Machulek Jr, A., Synthesis and characterization of mesoporous Nb 2 O 5 and its application for photocatalytic degradation of the herbicide methylviologen. J Braz Chem Soc 2016, 27, 303-313.
97.Xu, D.; Zhang, Y.; Zhang, D.; Yang, S., Structural, luminescence and magnetic properties of Yb 3+-Er 3+ codoped Gd 2 O 3 hierarchical architectures. CrystEngComm 2015, 17 (5), 1106-1114.
98.Hsiao, H.-Y.; Chuang, M.-C., Eliminating Evolved Oxygen through an Electro-flocculation Efficiently Prompts Stability and Catalytic Kinetics of an IrOx· nH2O Colloidal Nanostructured Electrode for Water Oxidation. Electrochim. Acta 2014, 137, 190-196.
99.Zheng, J.; Lei, Z., Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B 2018, 237, 1-8.
100.Zhu, C.; Liu, D.; Li, Y.; Chen, T.; You, T., Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chem. 2022, 373, 131443.
101.Benis, K. Z.; Soltan, J.; McPhedran, K. N., Electrochemically modified adsorbents for treatment of aqueous arsenic: Pore diffusion in modified biomass vs. Biochar. Chem. Eng. J. 2021, 423, 130061.
102.Liu, H.; Vecitis, C. D., Reactive transport mechanism for organic oxidation during electrochemical filtration: mass-transfer, physical adsorption, and electron-transfer. J. Phys. Chem. C 2012, 116 (1), 374-383.
103.Hillebrandt, H.; Tanaka, M., Electrochemical characterization of self-assembled alkylsiloxane monolayers on indium− tin oxide (ITO) semiconductor electrodes. J. Phys. Chem. B 2001, 105 (19), 4270-4276.
104.Schneider, J. T.; Firak, D. S.; Ribeiro, R. R.; Peralta-Zamora, P., Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Phys. Chem. Chem. Phys. 2020, 22 (27), 15723-15733.
105.Shtarev, D.; Shtareva, A.; Blokh, A.; Goncharova, P.; Makarevich, K., On the question of the optimal concentration of benzoquinone when it is used as a radical scavenger. Appl. Phys. A 2017, 123 (9), 1-15.

電子全文 電子全文(網際網路公開日期:20270906)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊