跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/12 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宜萱
研究生(外文):LIN, YI-HSUAN
論文名稱:電漿技術應用於牛乳巴氏殺菌並探討對黃嘌呤氧化酶活性之影響
論文名稱(外文):Application of plasma technology in milk pasteurization and influence on xanthine oxidase activity
指導教授:何若瑄何若瑄引用關係
指導教授(外文):HO, JOU-HSUAN
口試委員:周繼發徐詮亮
口試委員(外文):CHOW, CHI-FAHSU, CHUAN-LIANG
口試日期:2022-07-26
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:113
中文關鍵詞:電漿技術巴氏殺菌牛乳黃嘌呤氧化酶
外文關鍵詞:Plasma technologyPasteurizationMilkXanthine oxidase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
牛乳是富含豐富營養的食品,可提供人體無法自行合成的蛋白質,但同時也提供腐敗菌及病原菌良好的生長環境,引起牛乳的腐敗及變質;電漿(Cold plasma)是新穎的非熱加工技術,利用電場強度、處理時間及氣體流速來殺滅牛奶中的病原菌;高溫短時間殺菌(High temperature short time, HTST)為牛乳常見之殺菌方式,其加熱層次低且可維持食品的安全性並延長保存期限。本研究以電漿技術應用於牛乳巴氏殺菌觀察其理化特性,並探討對牛乳中的黃嘌呤氧化酶活性的影響,期望藉由電漿技術延長牛乳之保存期限及降低黃嘌呤氧化酶之活性。本研究以電漿技術(處理時間為0、1、5及10分鐘)、膜過濾技術應用巴氏殺菌與只進行HTST處理的控制組分別製備成全脂乳及脫脂乳,並在儲存期間0-15天中,以3天為間隔,測定可滴定酸、色差分析、酸價、硫巴比妥酸、褐化指數、示差掃描量熱法、營養價值評估、微生物分析及黃嘌呤氧化酶活性分析。
研究結果顯示,經電漿處理10分鐘之全脂乳及膜過濾處理之脫脂乳於15天的儲存期,其可滴定酸度皆在0.18%以下(p>0.05),在微生物分析中,隨著儲存時間的增加,電漿處理組與膜過濾處理組皆有上升的趨勢(p>0.05) ,與只經HTST處理的控制組相比,電漿處理組生菌數仍在6 (log CFU/mL)以下,另在儲存期間經電漿及膜過濾處理組之pH值有顯著下降的趨勢(p<0.05),在色差分析也有顯著差異(p<0.05),在褐化指數僅有些微上升的趨勢((p>0.05),電漿和膜過濾應用巴氏殺菌牛乳對於梅納反應影響程度小,但當電漿中電場強度及處理時間增加,仍會加速反應。此外,當儲存時間的增加,脫脂乳之酸價數值有增加的趨勢(p<0.05)及全脂乳之硫巴比妥酸也有增加的趨勢(p<0.05),顯示在儲存期間游離脂肪酸釋放至牛乳且乳脂產生氧化反應;在營養價值評估中,以膜過濾處裡之全脂乳,其乳清蛋白質變性程度較高(p<0.05),而胺基酸可利用效率隨著儲存時間變化無顯著差異(p>0.05),在表面疏水性中,市售組之全脂乳及脫脂乳皆有較高的數值(p<0.05),顯示熱處理使蛋白質變性,暴露疏水基團;在黃嘌呤氧化酶活性中,隨著儲存時間的增加,黃嘌呤氧化酶活性無顯著影響(p>0.05),綜合上述結果,電漿技術應用巴氏殺菌牛乳可延長保存期限至15天,且能保留較多營養價值,但對於黃嘌呤氧化酶活性並無差異,未來可開發應用於乳品加工中,使乳製品的殺菌技術有所提升,及進一步探討關於電漿技術與黃嘌呤氧化酶之間相互作用的機制。

Milk is rich in nutrients, therefore it provides humans with essential amino acids. However, it also is a suitable environment for spoilage organisms and pathogenic bacteria to grow making milk highly susceptible experiencing spoilage and deterioration.
Cold plasma is a novel non-thermal technology in food processing that could kills bacteria with the efficacy is depending on the intensity of the electric field, treatment time, and gas flow rate. High-temperature short time (HTST) is a common sterilization applied on milk processing. In addition, the heating processing of HTST improves food safety and extends the shelf life efficiently. In this study, we applied corona plasma treatment on milk and investigate its effects on the physicochemical characteristics, nutritional value, microbiological properties, and xanthine oxidase’s activity in treated milk. The whole milk and skim milk prepared through HTST pasteurization is taken as control while the milks prepared through HTST pasteurization after microfiltration or cold plasma treatment are taken as treated milk. During 15-day storage at 10 ℃, the titratable acidity, color parameter, acid value, thiobarbituric acid, browning index, differential scanning calorimeter (DSC), nutritional value, microbial properties, and xanthine oxidase’s activity were analyzed to determine what the shelf life of the milk.
The results demonstrated that microfiltration or cold plasma accompanying HTST treatment affected significantly on milk color, pH, acid value and denaturated protein. On the other hand, titratable acidity, microbial population, browning index, available lysine, xanthine oxidase activity, and protein surface hydrophobicity unaffected by the treatments. The L a* b* value between the control and treated milk are close during 12-day of storage, however, the obvious differences among the value registered on the last day of storage (15 day). The pH value of control milk is relatively stable while the treated milk tend to decrease. At the end of storage, the pH of whole milk are 6.41, 6.42 and 6.62 respectively for the control, microfiltration, and cold plasma treated milk. While the pH of skim milk are 6.62, 6.00, and 6.44 for the control, microfiltration, and cold plasma treated milk respectively. In addition, along with the storage time, the acid value of skim milk and the TBA value of whole milk tended to increase (p<0.05), indicating that the free fatty acids are released into the milk and undergoes an oxidation. The last, the whey protein percentage is lower at the end of the storage compared to control milk, indicating that the protein on treated milk is experiencing the denaturation process. Based on the microbial analysis, only cold plasma treatment for 10 minutes can maintain its bacteria content lower than 6 log CFU/mL for 15 days.
Based on the results, the application of plasma technology in milk pasteurization can extend the shelf life for 15 days and can retain more nutritional value. But there is no significant difference in the activity of xanthine oxidase. In the future, Plasma can be developed and applied in the dairy industry to improve the sterilization technology of the dairy product, and further, explore the mechanism of the interaction between cold plasma and xanthin oxidase activity.

謝誌 i
摘要 ii
Abstract iv
目錄 vi
表次 x
圖次 xi
壹、緒言 1
貳、文獻回顧 3
一、牛乳 3
(一)介紹 3
(二)黃嘌呤氧化還原酶 5
(三)主要微生物 11
(四)蛋白質變性 12
(五)梅納反應 13
(六)油脂氧化 14
二、加工技術 15
(一)熱加工技術 15
(二)非熱加工技術 19
參、材料方法 30
一、實驗流程 30
二、實驗儀器及藥品 31
(一)實驗材料 31
(二)實驗設備與器材 34
三、電漿裝置 36
四、實驗方法 38
(ㄧ)乳樣品之製備 38
(二)成分分析 40
(三)pH值 41
(四)色差分析 41
(五)可滴定酸度 42
(六)粒徑分析 42
(七)酸價 (acid value, AV) 43
(八)硫巴比妥酸 (thiobarbituric acid, TBA) 43
(九)褐化指數 44
(十)示差掃描量熱法(Differential scanning calorimetry, DSC) 44
(十一)營養價值評估 44
(十二)微生物分析 47
(十三)黃嘌呤氧化酶活性分析 48
(十四)統計方法 48
肆、結果與討論 50
一、成分分析 50
二、pH值 54
三、色差分析 57
四、可滴定酸度 63
五、粒徑分析 66
六、酸價 68
七、硫巴比妥酸 69
八、褐化指數 73
九、示差掃描量熱法 77
十、營養價值評估 79
(一)胺基酸可利用效率 79
(二)蛋白質變性程度 80
(三)表面疏水性 84
十一、微生物分析 87
(一)總生菌數 87
(二)耐熱菌數 90
十二、黃嘌呤氧化酶 93
伍、結論 96
陸、參考文獻 98

林慶文、李素珍、劉嚞睿。2002。乳品微生物學。第207-208頁。國立編譯館,台北市。
吳鈴彩。2004。藉體外蛋白水解試驗之胜肽生成量建立鮮乳最適殺菌條件。碩士論文。東海大學畜產與生物科技學系。
徐詮亮、高孟誠。2004。電漿殺菌技術原理及其應用 [Principles and Applications of Plasma Sterilization Technology]。真空科技。17(1):21-34。https://doi.org/10.29808/jvsroc.200407.0004
陳泰吉。2005。黃嘌呤氧化酶兩單體間之交互作用對催化受質機制之探討。碩士論文。國立清華大學化學系。
黃泰穎。2006。低黃嘌呤氧化酶活性及延長保存期限HTST鮮乳之製造。碩士論文。東海大學畜產與生物科技學系。
張勝善。1984。牛乳與乳製品。第126-127頁、第136-137頁、第276頁。長河出版社,台北市。

Al-Hilphy, A. R., Abdulstar, A. R., & Gavahian, M. (2021). Moderate electric field pasteurization of milk in a continuous flow unit: Effects of process parameters, energy consumption, and shelf-life determination. Innovative Food Science & Emerging Technologies, 67, 102568. https://doi.org/https://doi.org/10.1016/j.ifset.2020.102568

Anema, S. G. (2014). Chapter 9 - The Whey Proteins in Milk: Thermal Denaturation, Physical Interactions, and Effects on the Functional Properties of Milk. In H. Singh, M. Boland, & A. Thompson (Eds.), Milk Proteins (Second Edition) (pp. 269-318). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-405171-3.00009-X

Berk, Z. (2009). Chapter 10 - Membrane processes. In Z. Berk (Ed.), Food Process Engineering and Technology (pp. 233-257). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-373660-4.00010-7

Bogahawaththa, D., Chandrapala, J., & Vasiljevic, T. (2017). Thermal denaturation of bovine immunoglobulin G and its association with other whey proteins. Food Hydrocolloids, 72, 350-357. https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.06.017

Brito-de la Fuente, E., Torrestiana-Sánchez, B., Martínez-González, E., & Mainou-Sierra, J. M. (2010). Microfiltration of whole milk with silicon microsieves: Effect of process variables. Chemical Engineering Research and Design, 88(5), 653-660. https://doi.org/https://doi.org/10.1016/j.cherd.2009.09.014

Brondino, C. D., Romão, M. J., Moura, I., & Moura, J. J. G. (2006). Molybdenum and tungsten enzymes: the xanthine oxidase family. Current Opinion in Chemical Biology, 10(2), 109-114. https://doi.org/https://doi.org/10.1016/j.cbpa.2006.01.034

Calvo, T., Alvarez-Ordóñez, A., Prieto, M., Bernardo, A., & López, M. (2017). Stress adaptation has a minor impact on the effectivity of Non-Thermal Atmospheric Plasma (NTAP) against Salmonella spp. Food Research International, 102, 519-525. https://doi.org/https://doi.org/10.1016/j.foodres.2017.09.035

Carter, B. G., Cheng, N., Kapoor, R., Meletharayil, G. H., & Drake, M. A. (2021). Invited review: Microfiltration-derived casein and whey proteins from milk. Journal of Dairy Science, 104(3), 2465-2479. https://doi.org/https://doi.org/10.3168/jds.2020-18811

Chandrapala, J., McKinnon, I., Augustin, M. A., & Udabage, P. (2010). The influence of milk composition on pH and calcium activity measured in situ during heat treatment of reconstituted skim milk. Journal of Dairy Research, 77(3), 257-264. https://doi.org/10.1017/S0022029910000026

Chavan, R. S., Sehrawat, R., Mishra, V., & Bhatt, S. (2016). Milk: Processing of Milk. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 729-735). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384947-2.00464-5

Chen, B., Lewis, M. J., & Grandison, A. S. (2014). Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chemistry, 158, 216-223. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.02.118

Chen, D., Peng, P., Zhou, N., Cheng, Y., Min, M., Ma, Y., Mao, Q., Chen, P., Chen, C., & Ruan, R. (2019). Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 290, 270-276. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.03.149

Chugh, A., Khanal, D., Walkling-Ribeiro, M., Corredig, M., Duizer, L., & Griffiths, M. W. (2014). Change in Color and Volatile Composition of Skim Milk Processed with Pulsed Electric Field and Microfiltration Treatments or Heat Pasteurization. Foods, 3(2), 250-268. https://www.mdpi.com/2304-8158/3/2/250

Collomb, M., & Spahni, M. (1996). Review of the methods for the determination of lipid oxidation products with special reference to milk lipids. Schweizerische Milchwirtschaftliche Forschung, 25, 3-24.

Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Ranadheera, C. S., Borges, F. O., Mathias, S. P., Fernandes, F. A. N., Rodrigues, S., & Cruz, A. G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56-68. https://doi.org/https://doi.org/10.1016/j.tifs.2018.02.008

Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1), 49-54. https://doi.org/https://doi.org/10.1016/j.ifset.2005.07.001

Dash, K. K., Fayaz, U., Dar, A. H., Shams, R., Manzoor, S., Sundarsingh, A., Deka, P., & Khan, S. A. (2022). A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chemistry Advances, 1, 100041. https://doi.org/https://doi.org/10.1016/j.focha.2022.100041

Deák, T. (2014). Food Technologies: Pasteurization. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety (pp. 219-224). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-378612-8.00257-2

Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & Van Camp, J. (2008). Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18(5), 436-457. https://doi.org/https://doi.org/10.1016/j.idairyj.2007.10.014

Early, R. (2012). 17 - Dairy products and milk-based food ingredients. In D. Baines & R. Seal (Eds.), Natural Food Additives, Ingredients and Flavourings (pp. 417-445). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9780857095725.2.417

Elwell, M., & Barbano, D. (2006). Use of microfiltration to improve fluid milk quality. Journal of Dairy Science, 89, E20-E30.

Elwell, M. W., & Barbano, D. M. (2006). Use of Microfiltration to Improve Fluid Milk Quality1,2. Journal of Dairy Science, 89, E20-E30. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(06)72361-X

Ercolini, D., Russo, F., Ferrocino, I., & Villani, F. (2009). Molecular identification of mesophilic and psychrotrophic bacteria from raw cow's milk. Food Microbiology, 26(2), 228-231. https://doi.org/https://doi.org/10.1016/j.fm.2008.09.005

Fellows, P. J. (2017). 11 - Pasteurisation. In P. J. Fellows (Ed.), Food Processing Technology (Fourth Edition) (pp. 563-580). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100522-4.00011-0

Feng, J., Berton-Carabin, C. C., Fogliano, V., & Schroën, K. (2022). Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends in Food Science & Technology, 121, 129-141. https://doi.org/https://doi.org/10.1016/j.tifs.2022.02.008

Ferrer, E., Alegría, A., Farré, R., Clemente, G., & Calvo, C. (2005). Fluorescence, Browning Index, and Color in Infant Formulas during Storage. Journal of Agricultural and Food Chemistry, 53(12), 4911-4917. https://doi.org/10.1021/jf0403585

Fitzsimons, S. M., Mulvihill, D. M., & Morris, E. R. (2007). Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. Food Hydrocolloids, 21(4), 638-644. https://doi.org/https://doi.org/10.1016/j.foodhyd.2006.07.007

Fox, P. F. (2008). Chapter 1 - Milk: an overview. In A. Thompson, M. Boland, & H. Singh (Eds.), Milk Proteins (pp. 1-54). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374039-7.00001-5

Fox, P. F., & Kelly, A. L. (2006). Indigenous enzymes in milk: Overview and historical aspects—Part 1. International Dairy Journal, 16(6), 500-516. https://doi.org/https://doi.org/10.1016/j.idairyj.2005.09.013

Gadri, R. B., Roth, J. R., Montie, T. C., Kelly-Wintenberg, K., Tsai, P. P. Y., Helfritch, D. J., Feldman, P., Sherman, D. M., Karakaya, F., & Chen, Z. (2000). Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surface and Coatings Technology, 131(1), 528-541. https://doi.org/https://doi.org/10.1016/S0257-8972(00)00803-3

Galarza, U., Iturmendi, N., García, A., Fernández, T., & Maté, J. I. (2022). Evolution of microbial and protein qualities of fractions of milk protein processed by microfiltration. LWT, 157, 113064. https://doi.org/https://doi.org/10.1016/j.lwt.2021.113064

Griep, E. R., Cheng, Y., & Moraru, C. I. (2018). Efficient removal of spores from skim milk using cold microfiltration: Spore size and surface property considerations. Journal of Dairy Science, 101(11), 9703-9713. https://doi.org/https://doi.org/10.3168/jds.2018-14888

Guinee, T. P. (2021). Effect of high-temperature treatment of milk and whey protein denaturation on the properties of rennet–curd cheese: A review. International Dairy Journal, 105095. https://doi.org/https://doi.org/10.1016/j.idairyj.2021.105095

Gurol, C., Ekinci, F. Y., Aslan, N., & Korachi, M. (2012). Low Temperature Plasma for decontamination of E. coli in milk. International Journal of Food Microbiology, 157(1), 1-5. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2012.02.016

Harrison, R. (2004). Physiological roles of xanthine oxidoreductase. Drug metabolism reviews, 36(2), 363-375.

Haskard, C. A., & Li-Chan, E. C. (1998). Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes. Journal of Agricultural and Food Chemistry, 46(7), 2671-2677.

Ho, T. M., Dhungana, P., Bhandari, B., & Bansal, N. (2021). Effect of the native fat globule size on foaming properties and foam structure of milk. Journal of Food Engineering, 291, 110227. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2020.110227

Horne, D. S. (2008). Chapter 5 - Casein micelle structure and stability. In A. Thompson, M. Boland, & H. Singh (Eds.), Milk Proteins (pp. 133-162). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374039-7.00005-2

Jadhav, H. B., & Annapure, U. (2021). Consequences of non-thermal cold plasma treatment on meat and dairy lipids – A review. Future Foods, 4, 100095. https://doi.org/https://doi.org/10.1016/j.fufo.2021.100095

Khanal, S. N., Anand, S., Muthukumarappan, K., & Huegli, M. (2014). Inactivation of thermoduric aerobic sporeformers in milk by ultrasonication. Food Control, 37, 232-239. https://doi.org/https://doi.org/10.1016/j.foodcont.2013.09.022

Kilic-Akyilmaz, M., Ozer, B., Bulat, T., & Topcu, A. (2022). Effect of heat treatment on micronutrients, fatty acids and some bioactive components of milk. International Dairy Journal, 126, 105231. https://doi.org/https://doi.org/10.1016/j.idairyj.2021.105231

Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., & Jo, C. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28(1), 9-13. https://doi.org/https://doi.org/10.1016/j.fm.2010.07.022

Kim, H.-J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47, 451-456. https://doi.org/https://doi.org/10.1016/j.foodcont.2014.07.053

Kim, J.-S., Lee, E.-J., Choi, E. H., & Kim, Y.-J. (2014). Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science & Emerging Technologies, 22, 124-130. https://doi.org/https://doi.org/10.1016/j.ifset.2013.12.012

Kopuk, B., Gunes, R., & Palabiyik, I. (2022). Cold plasma modification of food macromolecules and effects on related products. Food Chemistry, 382, 132356. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.132356

Korachi, M., Ozen, F., Aslan, N., Vannini, L., Guerzoni, M. E., Gottardi, D., & Ekinci, F. Y. (2015). Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. International Dairy Journal, 42, 64-69. https://doi.org/https://doi.org/10.1016/j.idairyj.2014.10.006

Koubaa, M., Roohinejad, S., Mungure, T. E., Alaa El-Din, B., Greiner, R., & Mallikarjunan, K. (2019). Effect of Emerging Processing Technologies on Maillard Reactions. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of Food Chemistry (pp. 76-82). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.21652-1

Lambert, A., Bougrioua, F., Abbas, O., Courty, M., El Marssi, M., Faivre, V., & Bresson, S. (2018). Temperature dependent Raman and X-ray diffraction studies of anhydrous milk fat. Food Chemistry, 267, 187-195. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.09.006

Li, F., Hunt, K., Buggy, A. K., Murphy, K. M., Ho, Q. T., O'Callaghan, T. F., Butler, F., Jordan, K., & Tobin, J. T. (2020). The effects of sequential heat treatment on microbial reduction and spore inactivation during milk processing. International Dairy Journal, 104, 104648. https://doi.org/https://doi.org/10.1016/j.idairyj.2020.104648

Li, Y., Quan, W., Jia, X., He, Z., Wang, Z., Zeng, M., & Chen, J. (2021). Profiles of initial, intermediate, and advanced stages of harmful Maillard reaction products in whole-milk powders pre-treated with different heat loads during 18 months of storage. Food Chemistry, 351, 129361. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129361

Li, Z., Liu, D., Xu, S., Zhang, W., Hemar, Y., Regenstein, J. M., & Zhou, P. (2021). Effects of pasteurization, microfiltration, and ultraviolet-c treatments on microorganisms and bioactive proteins in bovine skim milk. Food Bioscience, 43, 101339. https://doi.org/https://doi.org/10.1016/j.fbio.2021.101339

Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83-91. https://doi.org/https://doi.org/10.1016/j.foodcont.2016.12.021

Lindsay, D., Robertson, R., Fraser, R., Engstrom, S., & Jordan, K. (2021). Heat induced inactivation of microorganisms in milk and dairy products. International Dairy Journal, 121, 105096. https://doi.org/https://doi.org/10.1016/j.idairyj.2021.105096

Liu, Y., Xiong, L., Kontopodi, E., Boeren, S., Zhang, L., Zhou, P., & Hettinga, K. (2020). Changes in the milk serum proteome after thermal and non-thermal treatment. Innovative Food Science & Emerging Technologies, 66, 102544. https://doi.org/https://doi.org/10.1016/j.ifset.2020.102544

Lu, M., & Wang, N. S. (2017). Chapter 7 - Spoilage of Milk and Dairy Products. In A. Bevilacqua, M. R. Corbo, & M. Sinigaglia (Eds.), The Microbiological Quality of Food (pp. 151-178). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100502-6.00010-8

Luque, S., Gómez, D., & Álvarez, J. R. (2008). Industrial Applications of Porous Ceramic Membranes (Pressure‐Driven Processes). In Membrane Science and Technology (Vol. 13, pp. 177-216). Elsevier. https://doi.org/https://doi.org/10.1016/S0927-5193(07)13006-0

Malec, L. S., Pereyra Gonzales, A. S., Naranjo, G. B., & Vigo, M. S. (2002). Influence of water activity and storage temperature on lysine availability of a milk like system. Food Research International, 35(9), 849-853. https://doi.org/https://doi.org/10.1016/S0963-9969(02)00088-1

Manoharan, D., Stephen, J., & Radhakrishnan, M. (2021). Study on low‐pressure plasma system for continuous decontamination of milk and its quality evaluation. Journal of Food Processing and Preservation, 45(2), e15138.

Mao, L., Mhaske, P., Zing, X., Kasapis, S., Majzoobi, M., & Farahnaky, A. (2021). Cold plasma: Microbial inactivation and effects on quality attributes of fresh and minimally processed fruits and Ready-To-Eat vegetables. Trends in Food Science & Technology, 116, 146-175. https://doi.org/https://doi.org/10.1016/j.tifs.2021.07.002

McAuley, C. M., Gobius, K. S., Britz, M. L., & Craven, H. M. (2012). Heat resistance of thermoduric enterococci isolated from milk. International Journal of Food Microbiology, 154(3), 162-168. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2011.12.033

McDermott, A., Visentin, G., McParland, S., Berry, D. P., Fenelon, M. A., & De Marchi, M. (2016). Effectiveness of mid-infrared spectroscopy to predict the color of bovine milk and the relationship between milk color and traditional milk quality traits. Journal of Dairy Science, 99(5), 3267-3273. https://doi.org/https://doi.org/10.3168/jds.2015-10424

McManaman, J. L., & Bain, D. L. (2002). Structural and Conformational Analysis of the Oxidase to Dehydrogenase Conversion of Xanthine Oxidoreductase*. Journal of Biological Chemistry, 277(24), 21261-21268. https://doi.org/https://doi.org/10.1074/jbc.M200828200

Michalac, S., Alvarez, V., Ji, T., & Zhang, Q. (2003). Inactivation of selected microorganisms and properties of pulsed electric field processed milk. Journal of Food Processing and Preservation, 27(2), 137-151.

Misra, N. N., & Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology, 64, 74-86. https://doi.org/https://doi.org/10.1016/j.tifs.2017.04.005

Moisan, M., Barbeau, J., Crevier, M.-C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358.

Moro, A., Gatti, C., & Delorenzi, N. (2001). Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties. Journal of Agricultural and Food Chemistry, 49(10), 4784-4789.

Motarjemi, Y., Moy, G. G., Jooste, P. J., & Anelich, L. E. (2014). Chapter 5 - Milk and Dairy Products. In Y. Motarjemi & H. Lelieveld (Eds.), Food Safety Management (pp. 83-117). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-381504-0.00005-6

Moutiq, R., Misra, N. N., Mendonça, A., & Keener, K. (2020). In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Science, 159, 107942. https://doi.org/https://doi.org/10.1016/j.meatsci.2019.107942

Muhammad, A. I., Li, Y., Liao, X., Liu, D., Ye, X., Chen, S., Hu, Y., Wang, J., & Ding, T. (2019). Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk. Food Control, 96, 119-127. https://doi.org/https://doi.org/10.1016/j.foodcont.2018.09.010

Muir, D. D. (2011). 27 - The stability and shelf life of milk and milk products. In D. Kilcast & P. Subramaniam (Eds.), Food and Beverage Stability and Shelf Life (pp. 755-778). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9780857092540.3.755

O'Brien, N. M., & O'Connor, T. P. (2016). Milk Lipids: Lipid Oxidation. In Reference Module in Food Science. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.00924-0

Ozturk, G., German, J. B., & de Moura Bell, J. M. L. N. (2019). Effects of industrial heat treatments on the kinetics of inactivation of antimicrobial bovine milk xanthine oxidase. npj Science of Food, 3(1), 13. https://doi.org/10.1038/s41538-019-0046-8

Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), 4.

Parnell-Clunies, E., Kakuda, Y., Irvine, D., & Mullen, K. (1988). Heat-Induced Protein Changes in Milk Processed by Vat and Continuous Heating Systems. Journal of Dairy Science, 71(6), 1472-1483. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(88)79710-6

Paulsson, M., & Dejmek, P. (1990). Thermal Denaturation of Whey Proteins in Mixtures with Caseins Studied by Differential Scanning Calorimetry. Journal of Dairy Science, 73(3), 590-600. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(90)78707-3

Pereyra Gonzáles, A. S., Naranjo, G. B., Malec, L. S., Vigo, M., x, & a, S. (2003). Available lysine, protein digestibility and lactulose in commercial infant formulas. International Dairy Journal, 13(2), 95-99. https://doi.org/https://doi.org/10.1016/S0958-6946(02)00173-5

Polito, L., Bortolotti, M., Battelli, M. G., & Bolognesi, A. (2021). Xanthine oxidoreductase: A leading actor in cardiovascular disease drama. Redox Biology, 48, 102195. https://doi.org/https://doi.org/10.1016/j.redox.2021.102195

Pouliot, Y. (2008). Membrane processes in dairy technology—From a simple idea to worldwide panacea. International Dairy Journal, 18(7), 735-740. https://doi.org/https://doi.org/10.1016/j.idairyj.2008.03.005

Rüegg, M., Moor, U., & Blanc, B. (1977). A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. Journal of Dairy Research, 44(3), 509-520.

Raikos, V. (2010). Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloids, 24(4), 259-265. https://doi.org/https://doi.org/10.1016/j.foodhyd.2009.10.014

Rashidinejad, A., Birch, E. J., & Everett, D. W. (2016). Green tea catechins suppress xanthine oxidase activity in dairy products: An improved HPLC analysis. Journal of Food Composition and Analysis, 48, 120-127. https://doi.org/https://doi.org/10.1016/j.jfca.2016.03.001

Rashidinejad, A., & Birch, J. (2019). Xanthine Oxidase in Dairy Foods. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of Food Chemistry (pp. 374-380). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.21648-X

Sahu, J. K., & Mallikarjunan, P. K. (2012). Modeling of particle size distribution of heat assisted high-pressure treated reconstituted cow milk: Effect of high pressure, pressurization time and heat treatment temperature. LWT - Food Science and Technology, 48(2), 255-260. https://doi.org/https://doi.org/10.1016/j.lwt.2012.03.023

Santos, M. V., Ma, Y., & Barbano, D. M. (2003). Effect of Somatic Cell Count on Proteolysis and Lipolysis in Pasteurized Fluid Milk During Shelf-Life Storage. Journal of Dairy Science, 86, 2491-2503. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(03)73843-0

Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324-333. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.05.016

Saremnezhad, S., Soltani, M., Faraji, A., & Hayaloglu, A. A. (2021). Chemical changes of food constituents during cold plasma processing: A review. Food Research International, 147, 110552. https://doi.org/https://doi.org/10.1016/j.foodres.2021.110552

Schmidt, H. M., Kelley, E. E., & Straub, A. C. (2019). The impact of xanthine oxidase (XO) on hemolytic diseases. Redox Biology, 21, 101072. https://doi.org/https://doi.org/10.1016/j.redox.2018.101072

Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2015). Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Science & Emerging Technologies, 29, 247-254. https://doi.org/https://doi.org/10.1016/j.ifset.2015.03.014

Sha, W., Hou, C., Yuan, E., Li, Y., & Ren, J. (2021). Different processed milk with residual xanthine oxidase activity and risk of increasing serum uric acid level. Food Bioscience, 40, 100892. https://doi.org/https://doi.org/10.1016/j.fbio.2021.100892

Sharma, P., Oey, I., Bremer, P., & Everett, D. W. (2014). Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal, 39(1), 146-156. https://doi.org/https://doi.org/10.1016/j.idairyj.2014.06.003

Sharma, P., Oey, I., & Everett, D. W. (2016). Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk. Food Chemistry, 207, 34-42. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.03.076

Shi, X.-M., Zhang, G.-J., Wu, X.-L., Li, Y.-X., Ma, Y., & Shao, X.-J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591-1597.

Shim, S. Y., Ahn, J., & Kwak, H. S. (2003). Functional Properties of Cholesterol-Removed Whipping Cream Treated by β-Cyclodextrin. Journal of Dairy Science, 86(9), 2767-2772. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(03)73873-9

Silanikove, N., & Shapiro, F. (2007). Distribution of xanthine oxidase and xanthine dehydrogenase activity in bovine milk: Physiological and technological implications. International Dairy Journal, 17(10), 1188-1194. https://doi.org/https://doi.org/10.1016/j.idairyj.2007.03.003

Solah, V., Staines, V., Honda, S., & Limley, H. (2007). Measurement of Milk Color and Composition: Effect of Dietary Intervention on Western Australian Holstein‐Friesian Cow's Milk Quality. Journal of food science, 72(8), S560-S566.

van Boekel, M. A. J. S. (2006). Formation of flavour compounds in the Maillard reaction. Biotechnology Advances, 24(2), 230-233. https://doi.org/https://doi.org/10.1016/j.biotechadv.2005.11.004

Vorbach, C., Scriven, A., & Capecchi, M. R. (2002). The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes & development, 16(24), 3223-3235.

Wei, Q., Wang, X., Sun, D.-W., & Pu, H. (2019). Rapid detection and control of psychrotrophic microorganisms in cold storage foods: A review. Trends in Food Science & Technology, 86, 453-464. https://doi.org/https://doi.org/10.1016/j.tifs.2019.02.009

Whitehead, J. C. (2016). Chapter 3 - The Chemistry of Cold Plasma. In N. N. Misra, O. Schlüter, & P. J. Cullen (Eds.), Cold Plasma in Food and Agriculture (pp. 53-81). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-801365-6.00003-2

Wijayanti, H. B., Brodkorb, A., Hogan, S. A., & Murphy, E. G. (2019). Chapter 6 - Thermal Denaturation, Aggregation, and Methods of Prevention. In H. C. Deeth & N. Bansal (Eds.), Whey Proteins (pp. 185-247). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812124-5.00006-0

Wiking, L., Stagsted, J., Björck, L., & Nielsen, J. H. (2004). Milk fat globule size is affected by fat production in dairy cows. International Dairy Journal, 14(10), 909-913. https://doi.org/https://doi.org/10.1016/j.idairyj.2004.03.005

Yüksel, Z., & Erdem, Y. K. (2005). The influence of main milk components on the hydrophobic interactions of milk protein system in the course of heat treatment. Journal of Food Engineering, 67(3), 301-308. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2004.04.032

Yong, H. I., Kim, H.-J., Park, S., Kim, K., Choe, W., Yoo, S. J., & Jo, C. (2015). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Research International, 69, 57-63. https://doi.org/https://doi.org/10.1016/j.foodres.2014.12.008

Zhang, H., Ma, D., Qiu, R., Tang, Y., & Du, C. (2017). Non-thermal plasma technology for organic contaminated soil remediation: A review. Chemical Engineering Journal, 313, 157-170. https://doi.org/https://doi.org/10.1016/j.cej.2016.12.067

Zhang, W., Liu, Y., Li, Z., Xu, S., Hettinga, K., & Zhou, P. (2021). Retaining bioactive proteins and extending shelf life of skim milk by microfiltration combined with Ultraviolet-C treatment. LWT, 141, 110945. https://doi.org/https://doi.org/10.1016/j.lwt.2021.110945

Zhang, W., Liu, Y., Li, Z., Xu, S., Zhang, J., Hettinga, K., & Zhou, P. (2021). Effects of microfiltration combined with ultrasonication on shelf life and bioactive protein of skim milk. Ultrasonics Sonochemistry, 77, 105668. https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105668

Zhao, Q., Zhao, M., Yang, B., & Cui, C. (2009). Effect of xanthan gum on the physical properties and textural characteristics of whipped cream. Food Chemistry, 116(3), 624-628. https://doi.org/https://doi.org/10.1016/j.foodchem.2009.02.079

Zhu, Z., Bassey, A. P., Huang, T., Zhang, Y., Ali Khan, I., & Huang, M. (2022). The formation, germination, and cold plasma inactivation of bacterial spore. Food Chemistry Advances, 1, 100056. https://doi.org/https://doi.org/10.1016/j.focha.2022.100056

Zuo, R., Zhou, S., Zuo, Y., & Deng, Y. (2015). Determination of creatinine, uric and ascorbic acid in bovine milk and orange juice by hydrophilic interaction HPLC. Food Chemistry, 182, 242-245. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.02.142



電子全文 電子全文(網際網路公開日期:20270921)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top