跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許慧真
研究生(外文):HSU, HUI-CHEN
論文名稱:在雙截資料下半參數轉換模型的條件最大概似估計
論文名稱(外文):Conditional Maximum Likelihood Estimation for Semiparametric Transformation Models with Doubly Truncated Data
指導教授:沈葆聖沈葆聖引用關係
指導教授(外文):SHEN, PAO-SHENG
口試委員:張玉媚林正祥戴政陳春樹
口試委員(外文):CHANG, YU-MEILIN, CHENG-HSIANGTAI, CHENGCHEN, CHUN-SHU
口試日期:2021-12-29
學位類別:博士
校院名稱:東海大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:47
中文關鍵詞:存活雙截資料半參數轉換模型條件最大概似估計條件獨立
外文關鍵詞:survivaldoubly truncatedsemiparametric transformation modelconditional maximum likelihoodconditional independence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
當失敗時間T僅在區間[U,V]內時才會出現雙截資料,其中U和V分別是左截時間和右截時間。在本論文中,我們考慮分析具有雙截資料的半參數轉換模型。在文獻中,大多數現有方法都假設失敗時間和截斷時間是獨立的,這在實踐中可能會被違反。為了在給定共變數的情況下將獨立性假設放鬆為條件獨立性,我們考慮模型的回歸參數和累積風險函數的條件最大概似估計量(cMLE)。使用回歸參數和無限維累積函數的score方程,我們提出了一種迭代演算法來獲得cMLE。我們證明cMLE是一致的且漸近常態的。模擬結果顯示,當獨立性假設成立時,cMLE表現得足夠好,並且比現有的估計器表現得更好。
Doubly truncated data occur when a failure time T is observed only if it falls within an interval [U, V ], where U and V are left-truncation and right-truncation times, respectively. In this dissertation, we consider analysis of semiparametric transformation regression models with doubly truncated data. In literature, most of the existing methods assume that failure times and truncation times are independent, which may be violated in practice. To relax the independence assumption to conditional independence given covariates, we consider the conditional maximum likelihood estimators (cMLE) for the regression parameters and cumulative hazard function of models. Using score equations for the regression parameters and the infinite-dimensional cumulative function, we propose an iterative algorithm for obtaining the cMLE. We show that the cMLE is consistent and asymptotically normal. Simulation result demonstrate that the cMLE performs adequately and performs better than the existing estimators when the independence assumption holds.

1 Introduction
1.1 Nonparametric Analysis
1.2 Regression Analysis
2 The Proposed Estimator
2.1 The cMLE
2.2 Computational algorithms for the cMLE
2.3 Asymptotic Properties
3 Simulation Studies
3.1 The cMLE under the dependent case
3.1.1 When both covariates are discrete and U depends on one covariate
3.1.2 When one covariate is continuous and U depends on one covariate
3.1.3 When U depends on two covariates
3.2 Comparison with EM estimator of Rennert and Xie (2018)
3.3 Independent Case
4 Analysis of AIDS Data
5 Discussion
6 Appendix
6.1 Appendix A: Proof of Proposition 1
6.2 Appendix B: Proof of Theorem 1
6.3 Appendix C: Proof of Theorem 2

Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics in Medicine, 2, 273-277.
Bilker, W. B. and Wang, M.-C. (1996). A semiparametric extension oft the Mann-Whitney test for randomly truncated data. Biometrics, 52, 10-20.
Cai, T. and Cheng, S. C. (2004). Semiparametric regression analysis for doubly censored data. Biometrika, 91, 277-290.
Chaieb, L. L., Rivest, L.-P. and Abdous, B. (2006), Estimating survival under a dependent truncation. Biometrika, 93, 655-669.
Chen, K., Jin, Z and Ying, Z. (2002). Semiparametric analysis of transformation models with censored data. Biometrika, 89, 659-668.
Chen, L., Lin, D. Y. and Zeng, D. (2012). Checking semiparametric transformation models with censored data. Biostatistics, 13, 18-31.
Chen, C.M. and Shen, P. S. (2018). Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data. Lifetime Data Analysis, 24, 250-272.
Cheng, S. C., Wei, L. J. and Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82, 4, 835-845.
Chiou, S. H., Austin, M. D., Qian, J. and Betensky, R. A. (2018a). Transformation model estimation of survival under dependent truncation and independent censoring. Statistical Methods in Medical Research, doi: 10.1177/0962280218817573.
Chiou, S. H., Qian, J., Mormino, E. and Betensky, R. A. (2018b) Permutation tests for general dependent truncation. Computational Statistics and Data Analysis, 128, 308-324.
Cox, D. (1972). Regression models and life tables (with Discussion). Journal of the Royal Statistical Society B, 34, 187-220.
Cox D. R. (1975). Partial likelihood. Biometrika, 62, 269-276.
de U˜na-Alvarez, J. and Van Keilegom, I. (2021). Efron-Petrosian integrals for ´ doubly truncated data with covariates: An asymptotic analysis. Bernoulli, 27, 249-273.
D¨orre, A. (2017). Bayesian estimation of a lifetime distribution under double truncation caused by time-restricted data collection. Statistical Papers, DOI: 10.1007/s00362-017-0968-7.
D¨orre, A. and Emura, T. (2019) Analysis of doubly truncated data an introduction. Springer Nature Singapore Pte Ltd.
Efron, B. and Petrosian, V., (1999). Nonparametric methods for doubly truncated data. Journal of the American Statistical Association, 94, 824-834. Emura, T. and Konno, Y. (2012a). A goodness-of-fit tests for parametric models based on dependently truncated data. Computational Statistics and Data Analysis, 56, 2237-2250.
Emura, T. and Konno, Y. (2012b). Multivariate normal distribution approaches for dependently truncated data. Statical Papers, 53, 133-149.
Emura, T. and Wang, W. (2012). Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. Journal of Multivariate Analysis, 110, 171-188.
Emura, T., Konno, Y. and Michimae, H. (2015). Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation Lifetime Data Analysis, 21, 397418.
Emura, T. and Konno, Y. (2015) An algorithm for estimating survival under a copula-based dependent truncation model. Test, 24, 734-751.
Emura, T. and Wang, W. (2016). Semiparametric inference for an accelerated failure time model with dependent truncation. Annals of the Institute of Statistical Mathematics, 68, 1073-1094.
Emura, T., Hu, Y.-H. and Konno, Y. (2017). Asymptotic inference for maximum likelihood estimators under the special exponential family with doubletruncation. Statistical Papers, 58, 877-909.
Frank, G. and D¨orre, A. (2017). Linear regressin with randomly double-truncated data. South African Statistical Journal, 51, 1-18.
Frank, G., Chae, M. and Kim, Y. (2019). Additive time-dependent hazard model with doubly truncated data. Journal of the Korean Statistical Society. 48, 179-193.
Gaver, P. and Miller G. (1983). Jackknifing the Kaplan-Meier survival estimator for censored data: simulation results and asymptotic analysis. Communications in Statistics: Theory and Methods 12 1701-1718.
Hu Y.-H. and Emura, T. (2015). Maximum likelihood estimation for a special exponential family under random double-truncation. Computational Statistics, 30, 1199-1229.
Kalbfleisch, J. D. and Lawless, J. F. (1989). Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS. Journal of the American Statistical Association, 84, 360-372.
Lynden-Bell, D. (1971). A method of allowing for known observational selection in small samples applied to 3CR quasars. Monthly Notices of the Royal Astronomical Society, 155, 95-118.
Mandel, M., de U˜na-Alvarez, J., Simon, D. K. and Betensky, R. A. (2018). In- ´ verse probability weighted Cox regression for doubly truncated data. Biometrics, vol. 74, 481-487.
Martin, E. C. and Betensky, R. (2005). Testing quasi-independence of failure and truncation times via conditional Kendall’s tau. Journal of the American Statistical Association, 100, 484-494.
Medley, G. F., Anderson, R. M., Cox, D. R., and Billard, L. (1987), Incubation Period of AIDS in Patients Infected Via Blood Transfusion, Nature, 328, 719- 721.
Medley, G. F., Billard, L., Cox, D. R., and Anderson, R. A. (1988). The Distribution of the Incubation Period for the Acquired Immunodeficiency Syndrome (AIDS). Proceedings of the Royal Society of London, Ser. B, 233, 367-377.
Moreira, C. and de U˜na-Alvarez, J. (2010a). Bootstrapping the NPMLE for doubly truncated data. Journal of Nonparametric Statistics, 22, No. 5, 567-583.
Moreira, C., de U˜na-Alvarez, J. and Rosa M. Crujeiras, R. M. (2010). DTDA: An R package to analyze randomly truncated data. Journal of Statistical Software, 37, Issue 7, 1-20.
Moreira, C. and de U˜na-Alvarez, J. (2010b). A semiparametric estimator of survival for doubly truncated data. Statistics in Medicine, 29, Issue 30, 3147-3159.
Moreira, C., de U˜na-Alvarez, J and L., Meira-Machado (2016). Nonparamet- ric regression with doubly truncated data. Computational Statistics & Data Analysis, 93, 294-307.
Mosteller, F. and Tukey, J. W., (1977). Data analysis and regression, AddisonWesley, Reading, MA.
Rennert, L. and Xie, S. X. (2018). Cox regression model with doubly truncated data. Biometrics, vol. 74, 725-733.
Rennert, L. and Xie, S. X. (2021). Cox regression model under dependent truncation. Biometrics, https://doi.org/10.1111/biom.13451.
Shen, Y., Ning, J. and Qin, J. (2009). Analyzing length-biased data with semiparametric transformation and accelerated failure time model. Journal of the American Statistical Association, 104, 1192-1202.
Shen, P.-S. (2010a). Nonparametric analysis of doubly truncated data. Annals of the Institute Statistical Mathematics, 62, No 5, 835-853.
Shen, P.-S. (2010b). Semiparametric analysis of doubly truncated data. Communications in Statistics-Theory and Methods, 39, 3178-3190.
Shen, P.-S. (2010c). Jackknife methods for left-truncated data. Journal of Statistical Planning and Inference, 140, 3468-3475.
Shen, P. S. (2016). Analysis of transformation models with doubly truncated data. Statistical Methodology, 30, 15-30.
Shen, P. S. (2017). Semiparametric analysis of transformation models with dependently left-truncated and right-censored data. Communications in Statistics- Simulation and Computation, 46, 2474-2487.
Shen, P. S. and Liu, Y. (2019a). Pseudo maximum likelihood estimation for the Cox model with doubly truncated data. Statistical Papers, 60, 1207-1224.
Shen, P. S. and Liu, Y. (2019b). Pseudo MLE for semiparametric transformation model with doubly truncated data. Journal of the Korean Statistical Society, 48, 384-395.
Stute, W. (1996). The jackknife estimate of variance of a Kaplan-Meier integral. The Annals of Statistics, 24, 2679-2704.
Van der Laan, M. J. (1996). Nonparametric estimation of the bivariate survival function with truncated data. Journal of Multivariate Analysis, 58, 107-131.
van der Vaart, A. W. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge.
van der Vaart, A. W. and Jon A. Wellner (2000). Weak convergence and empirical processes (with application to statistics), Springer Series in statistics.
Wang M.-C. (1987). Product-limit estimates: a generalized maximum likelihood study. Communications in Statistics: Theory and Methods, 6, 3117-3132.
Wang M.-C. (1989). A semiparametric model for randomly truncated data. Journal of the American Statistical Association, 84, 742-748..
Woodroofe, M.(1985). Estimating a distribution function with truncated data. Annals of Statistics, 13, 163-177.
Xiao, J. and Hudgens, M. G. (2019). On nonparametric maximum likelihood estimation with double truncation. Biometrika, 106, 989-996.
Yang, S. and Prentice R. (2005). Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data. Biometrika, 92, 1-17.
Zeng, D. and Lin, D. Y. (2006). Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93, 627-640.
Zeng, D. and Lin, D. Y. (2010). A general asymptotic theory for maximum likelihood estimation in semiparametric regression models with censored data. Statistica Sinica, 20, 871-910.
Zhang, Z., Sun, L., Zhao, X. and Sun, J. (2005). Regression analysis of intervalcensored failure time data with linear transformation models. Canadian Journal of Statistics, 33, 61-70.
Zhang, X. (2015). Nonparametric inference for an inverse-probability-weighted estimator with doubly truncated data. Communications in Statistics: Simulation and Computation, 44, 489-50


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top