|
Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics in Medicine, 2, 273-277. Bilker, W. B. and Wang, M.-C. (1996). A semiparametric extension oft the Mann-Whitney test for randomly truncated data. Biometrics, 52, 10-20. Cai, T. and Cheng, S. C. (2004). Semiparametric regression analysis for doubly censored data. Biometrika, 91, 277-290. Chaieb, L. L., Rivest, L.-P. and Abdous, B. (2006), Estimating survival under a dependent truncation. Biometrika, 93, 655-669. Chen, K., Jin, Z and Ying, Z. (2002). Semiparametric analysis of transformation models with censored data. Biometrika, 89, 659-668. Chen, L., Lin, D. Y. and Zeng, D. (2012). Checking semiparametric transformation models with censored data. Biostatistics, 13, 18-31. Chen, C.M. and Shen, P. S. (2018). Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data. Lifetime Data Analysis, 24, 250-272. Cheng, S. C., Wei, L. J. and Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82, 4, 835-845. Chiou, S. H., Austin, M. D., Qian, J. and Betensky, R. A. (2018a). Transformation model estimation of survival under dependent truncation and independent censoring. Statistical Methods in Medical Research, doi: 10.1177/0962280218817573. Chiou, S. H., Qian, J., Mormino, E. and Betensky, R. A. (2018b) Permutation tests for general dependent truncation. Computational Statistics and Data Analysis, 128, 308-324. Cox, D. (1972). Regression models and life tables (with Discussion). Journal of the Royal Statistical Society B, 34, 187-220. Cox D. R. (1975). Partial likelihood. Biometrika, 62, 269-276. de U˜na-Alvarez, J. and Van Keilegom, I. (2021). Efron-Petrosian integrals for ´ doubly truncated data with covariates: An asymptotic analysis. Bernoulli, 27, 249-273. D¨orre, A. (2017). Bayesian estimation of a lifetime distribution under double truncation caused by time-restricted data collection. Statistical Papers, DOI: 10.1007/s00362-017-0968-7. D¨orre, A. and Emura, T. (2019) Analysis of doubly truncated data an introduction. Springer Nature Singapore Pte Ltd. Efron, B. and Petrosian, V., (1999). Nonparametric methods for doubly truncated data. Journal of the American Statistical Association, 94, 824-834. Emura, T. and Konno, Y. (2012a). A goodness-of-fit tests for parametric models based on dependently truncated data. Computational Statistics and Data Analysis, 56, 2237-2250. Emura, T. and Konno, Y. (2012b). Multivariate normal distribution approaches for dependently truncated data. Statical Papers, 53, 133-149. Emura, T. and Wang, W. (2012). Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. Journal of Multivariate Analysis, 110, 171-188. Emura, T., Konno, Y. and Michimae, H. (2015). Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation Lifetime Data Analysis, 21, 397418. Emura, T. and Konno, Y. (2015) An algorithm for estimating survival under a copula-based dependent truncation model. Test, 24, 734-751. Emura, T. and Wang, W. (2016). Semiparametric inference for an accelerated failure time model with dependent truncation. Annals of the Institute of Statistical Mathematics, 68, 1073-1094. Emura, T., Hu, Y.-H. and Konno, Y. (2017). Asymptotic inference for maximum likelihood estimators under the special exponential family with doubletruncation. Statistical Papers, 58, 877-909. Frank, G. and D¨orre, A. (2017). Linear regressin with randomly double-truncated data. South African Statistical Journal, 51, 1-18. Frank, G., Chae, M. and Kim, Y. (2019). Additive time-dependent hazard model with doubly truncated data. Journal of the Korean Statistical Society. 48, 179-193. Gaver, P. and Miller G. (1983). Jackknifing the Kaplan-Meier survival estimator for censored data: simulation results and asymptotic analysis. Communications in Statistics: Theory and Methods 12 1701-1718. Hu Y.-H. and Emura, T. (2015). Maximum likelihood estimation for a special exponential family under random double-truncation. Computational Statistics, 30, 1199-1229. Kalbfleisch, J. D. and Lawless, J. F. (1989). Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS. Journal of the American Statistical Association, 84, 360-372. Lynden-Bell, D. (1971). A method of allowing for known observational selection in small samples applied to 3CR quasars. Monthly Notices of the Royal Astronomical Society, 155, 95-118. Mandel, M., de U˜na-Alvarez, J., Simon, D. K. and Betensky, R. A. (2018). In- ´ verse probability weighted Cox regression for doubly truncated data. Biometrics, vol. 74, 481-487. Martin, E. C. and Betensky, R. (2005). Testing quasi-independence of failure and truncation times via conditional Kendall’s tau. Journal of the American Statistical Association, 100, 484-494. Medley, G. F., Anderson, R. M., Cox, D. R., and Billard, L. (1987), Incubation Period of AIDS in Patients Infected Via Blood Transfusion, Nature, 328, 719- 721. Medley, G. F., Billard, L., Cox, D. R., and Anderson, R. A. (1988). The Distribution of the Incubation Period for the Acquired Immunodeficiency Syndrome (AIDS). Proceedings of the Royal Society of London, Ser. B, 233, 367-377. Moreira, C. and de U˜na-Alvarez, J. (2010a). Bootstrapping the NPMLE for doubly truncated data. Journal of Nonparametric Statistics, 22, No. 5, 567-583. Moreira, C., de U˜na-Alvarez, J. and Rosa M. Crujeiras, R. M. (2010). DTDA: An R package to analyze randomly truncated data. Journal of Statistical Software, 37, Issue 7, 1-20. Moreira, C. and de U˜na-Alvarez, J. (2010b). A semiparametric estimator of survival for doubly truncated data. Statistics in Medicine, 29, Issue 30, 3147-3159. Moreira, C., de U˜na-Alvarez, J and L., Meira-Machado (2016). Nonparamet- ric regression with doubly truncated data. Computational Statistics & Data Analysis, 93, 294-307. Mosteller, F. and Tukey, J. W., (1977). Data analysis and regression, AddisonWesley, Reading, MA. Rennert, L. and Xie, S. X. (2018). Cox regression model with doubly truncated data. Biometrics, vol. 74, 725-733. Rennert, L. and Xie, S. X. (2021). Cox regression model under dependent truncation. Biometrics, https://doi.org/10.1111/biom.13451. Shen, Y., Ning, J. and Qin, J. (2009). Analyzing length-biased data with semiparametric transformation and accelerated failure time model. Journal of the American Statistical Association, 104, 1192-1202. Shen, P.-S. (2010a). Nonparametric analysis of doubly truncated data. Annals of the Institute Statistical Mathematics, 62, No 5, 835-853. Shen, P.-S. (2010b). Semiparametric analysis of doubly truncated data. Communications in Statistics-Theory and Methods, 39, 3178-3190. Shen, P.-S. (2010c). Jackknife methods for left-truncated data. Journal of Statistical Planning and Inference, 140, 3468-3475. Shen, P. S. (2016). Analysis of transformation models with doubly truncated data. Statistical Methodology, 30, 15-30. Shen, P. S. (2017). Semiparametric analysis of transformation models with dependently left-truncated and right-censored data. Communications in Statistics- Simulation and Computation, 46, 2474-2487. Shen, P. S. and Liu, Y. (2019a). Pseudo maximum likelihood estimation for the Cox model with doubly truncated data. Statistical Papers, 60, 1207-1224. Shen, P. S. and Liu, Y. (2019b). Pseudo MLE for semiparametric transformation model with doubly truncated data. Journal of the Korean Statistical Society, 48, 384-395. Stute, W. (1996). The jackknife estimate of variance of a Kaplan-Meier integral. The Annals of Statistics, 24, 2679-2704. Van der Laan, M. J. (1996). Nonparametric estimation of the bivariate survival function with truncated data. Journal of Multivariate Analysis, 58, 107-131. van der Vaart, A. W. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge. van der Vaart, A. W. and Jon A. Wellner (2000). Weak convergence and empirical processes (with application to statistics), Springer Series in statistics. Wang M.-C. (1987). Product-limit estimates: a generalized maximum likelihood study. Communications in Statistics: Theory and Methods, 6, 3117-3132. Wang M.-C. (1989). A semiparametric model for randomly truncated data. Journal of the American Statistical Association, 84, 742-748.. Woodroofe, M.(1985). Estimating a distribution function with truncated data. Annals of Statistics, 13, 163-177. Xiao, J. and Hudgens, M. G. (2019). On nonparametric maximum likelihood estimation with double truncation. Biometrika, 106, 989-996. Yang, S. and Prentice R. (2005). Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data. Biometrika, 92, 1-17. Zeng, D. and Lin, D. Y. (2006). Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93, 627-640. Zeng, D. and Lin, D. Y. (2010). A general asymptotic theory for maximum likelihood estimation in semiparametric regression models with censored data. Statistica Sinica, 20, 871-910. Zhang, Z., Sun, L., Zhao, X. and Sun, J. (2005). Regression analysis of intervalcensored failure time data with linear transformation models. Canadian Journal of Statistics, 33, 61-70. Zhang, X. (2015). Nonparametric inference for an inverse-probability-weighted estimator with doubly truncated data. Communications in Statistics: Simulation and Computation, 44, 489-50
|