跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐俞君
研究生(外文):OU, YU-JUN
論文名稱:利用香菸濾嘴與不同活化劑製備之活性碳對稱型超級電容器電化學儲能表現探討
論文名稱(外文):Investigating energy storage ability ofsymmetric supercapacitors with activated carbon synthesized using different activating agents and waste cigarette filters
指導教授:林律吟
指導教授(外文):LIN, LU-YIN
口試委員:林律吟葉旻鑫郭霽慶蘇威年
口試委員(外文):LIN, LU-YINYEH, MIN-HSINKUO, CHI-CHINGSU, WEI-NIEN
口試日期:2022-01-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:70
中文關鍵詞:活性碳香菸濾嘴對稱型超級電容器醋酸纖維活化劑循環伏安法
外文關鍵詞:Activated carboncigarette filterssymmetrical supercapacitorsacetate fiberactivatorscyclic voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
超級電容器是近幾十年發展出的一種新型儲能元件,和一般電容器的差異在於具備高能量密度、快速充放電速率以及使用壽命長的特性。由於能源危機以及環保意識的逐漸抬頭,利用人類垃圾資源回收再利用來製備活性碳作為儲能材料之原料,除了可以解決地球資源匱乏問題之外,也能達到綠色環保、節能減碳的訴求。在超級電容中,製備高孔隙率的活性碳是一個必備的條件,而活化劑在這過程中就扮演了一個重要的角色,因為較大的比表面積可以增加電極和電解液的接觸面積,使得超級電容的效能增加。因此活化劑對於製備活性碳之物理性質以及其電化學的表現行為是建立高效能活性物質一個值得探討的議題。
本篇論文是使用回收的香菸濾嘴 (CF) 通過管狀爐高溫預碳化和利用不同酸鹼性的化學藥品如氫氧化鉀、磷酸、氯化鋅當作活化劑的化學活化法製成活性碳,以作為超級電容的活性碳儲能材料,然後使用聚偏二氟乙烯 (PVDF) 做為黏著劑,將活性碳塗佈於碳布上作為電極,研究結果顯示使用由氫氧化鉀製成的活性碳 (CAC-KOH) 電極在電流密度為 0.5 A/g 下可達到 106.5 F/g 的最大比電容值,是市售活性碳電極的 2.1倍 (50.0 F/g),接著我們使用最佳表現之活性碳電極組成對稱型超級電容器,其於電流密度 0.5 A/g 量測下可達到 1.3 V 的電位窗及 21.9 F/g 的比電容值。在功率密度為 325 W/kg 時,此對稱型超級電容器達 5.15 Wh/kg 的能量密度。另外,電極在進行 11000 次重複循環充放電過程後,此對稱型超級電容器可達到 73% 的電容保留率及 88% 的庫倫效率。未來期盼可以使用更多的垃圾資源回收材料利用活化劑的處理程序來製備活性碳成為高性能的電極材料,以達到低成本及環境友善的綠色儲能裝置。

The Supercapacitor is a new type element of energy storage capability developed in recent decades. It has different general capacitors due to its excellent properties of higher power density, faster charge-discharging rate and longer cycle life. Due to the energy crisis and the gradual rise of environmental awareness, using raw materials produced from the wastes and biomasses to synthesize activated carbon can not only solve the resource scarcity problem but also meet the demands of green environmental protection, energy saving and carbon reduction. High porosity is the prerequisites condition to prepare activated carbon in supercapacitors, and the activator plays an important role in this process. The effectiveness of the supercapacitor is increased because a larger specific surface area can increase the contact area between the electrode and the electrolyte. Therefore, the effects on the physical properties and electrochemical behavior of the activating agent for the preparation of activated carbon are worthy to investigate.
In this thesis, we used the waste cigarette filters (CF) to produce activated carbon through the high temperature carbonization and chemical activation method of the tubular furnace, which is used as the activated carbon energy storage material of the supercapacitor. Three kinds of alkaline, acid and neutral activating agents including potassium hydroxide (KOH), Phosphoric acid (H3PO4) and zinc chloride (ZnCl2) were applied to activate the waste cigarette filters for producing activated carbon. Subsequently, the activated carbon electrode was fabricated by using the carbon cloth substrate and the binder polyvinylidene fluoride (PVDF). The KOH-activated carbon electrode shows the highest specific capacitance of 106.5 F/g, which is two-fold of that for the commercial activated carbon electrode (50.0 F/g), The symmetric supercapacitors with the KOH-activated carbon (CAC-KOH) electrodes at the potential window of 1.3 V shows a specific capacitance of 21.9 F/g, and the maximum energy density of 5.15 Wh/kg at the power density of 325 W/kg. The specific capacitance retention of 73% and Coulombic efficiency of 88% during the 11000 times charging/discharging process were also obtained. In the future, other more waste recycling materials can be used to prepare activated carbon by using the efficient activating agent process to become high-performance electrode materials and achieve the low-cost and environmentally friendly green energy storage devices.

摘 要………i
ABSTRACT………iii
致 謝………v
目錄………………………vi
表目錄…………………ix
圖目錄……………………x
第一章 緒論……1
1.1 前言……1
1.2 研究動機 ………3
第二章 文獻回顧 ………4
2.1 超級電容器…4
2.1.1 簡介…………………4
2.1.2 儲能機制…………6
2.1.2.1電雙層電容器…………6
2.1.2.2擬電容電容器…………7
2.1.2.3混合型電容器…………8
2.1.3 組裝結構……………………………………………9
2.1.3.1對稱型超級電容器………………9
2.1.3.2非對稱型超級電容器…………9
2.2 超級電容器元件…………………………………………10
2.2.1 導電基材……………………………………………………………10
2.2.2 電解液種類………………………………………………………11
2.2.2.1水溶液電解液……………………11
2.2.2.2有機電解液…………………………11
2.2.2.3離子液體電解液………………11
2.2.2.4半固態電解液……………………12
2.2.3 儲能材料…………………………………………………………12
2.2.3.1金屬化合物……………………………12
2.2.3.2導電高分子……………………………13
2.2.3.3碳材……………………………………………13
2.3 資源回收活性碳………………………………………16
2.3.1簡介…………………………………………………16
2.3.2製造方法…………………………………………………………18
2.3.2.1前處理……………………………………18
2.3.2.2碳化…………………………………………18
2.3.2.3活化…………………………………………18
2.3.2.4後處理……………………………………20
2.3.3應用……………………………………………………………………20
第三章 藥品儀器與實驗方法……………………………24
3.1 實驗藥品…………………………………………………………24
3.2 實驗儀器……………………………………………………………25
3.2.1製程儀器………………………………………25
3.2.2物性分析儀器……………………………26
3.2.3電化學分析儀器………………………27
3.3 實驗流程……………………………………………………………28
3.3.1碳布基材………………………………………28
3.3.2香菸濾嘴前處理………………………28
3.3.3製備香菸濾嘴活性碳……………29
3.3.4電極製備……………………………………30
第四章 物性與電化學分析原理………31
4.1 掃描式電子顯微鏡 (Scanning electron microscope, SEM)……31
4.2 X 射線繞射儀 (X-ray diffractometer, XRD) ………………32
4.3 傅立葉轉換紅外光譜儀 (Fourier-transform infrared spectroscopy, FTIR)…33
4.4 比表面積與孔隙分佈分析儀 (Specific surface area & pore size distribution
analyzer by gas adsorption method)………………34
4.5 拉曼光譜儀 (Raman spectroscopy)……36
4.6 接觸角測量儀(Contact angle meter…37
4.7 循環伏安法 (Cyclic voltammetry, CV)………………38
4.8 恆電流充放電 (Galvanostatic charge-discharge, GC/D)………………39
4.9 電化學阻抗圖譜 (Electrochemical impedance spectroscopy, EIS)………………40
第五章 結果與討論………………41
5.1 物性分析………………41
5.1.1 不同活化劑製備之活性碳結構分析………………41
5.1.2 不同活化劑製備之活性碳組成分析………………42
5.2 三極式電化學分析………………49
5.2.1 不同活化劑製備之活性碳電化學量測分析………………49
5.2.2 不同掃描速率與電流密度量測分析………………51
5.2.3 市售活性碳與香菸濾嘴製備活性碳之電極電化學表現比較………53
5.2.4 降低活化溫度電化學量測分析………………56
5.3 對稱型電容器電化學分析………………57
第六章 結論與建議………………60
6.1 結論………………60
6.2 建議………………61
參考文獻………………62

1.Huang, J., et al., Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials Review, 2021.
2.Su, D.S., et al., Nanocarbons for the development of advanced catalysts. Chemical Reviews, 2013. 113(8): p. 5782-5816.
3.Pan, J.F., et al., Study on the Adsorption Characteristics of Inorganic Activated Charcoal Gel on Formaldehyde. Struct Chem, 2013. 2(3): p. 335-340.
4.Dang, A., et al., A novel hierarchically carbon foam templated carbon nanotubes/ polyaniline electrode for efficient electrochemical supercapacitor. Fullerenes Nanotubes and Carbon Nanostructures, 2019. 27(5): p. 440-445.
5.Huang, X., et al., Graphene based composites. Chem Soc Rev, 2012. 41(2): p. 666-686.
6.Ahmed, S., Ahmed, A. and Rafat, M., Supercapacitor performance of activated carbonderived from rotten carrot in aqueous, organic andionic liquid based electrolytes. Journal of Saudi Chemical Society, 2018. 22(8): p. 993-1002.
7.Subramanian, V., et al., Supercapacitors from Activated Carbon Derived from Banana Fibers. The Journal of Physical Chemistry C, 2007. 111(20): p. 7527-7531.
8.Farzana, R., Rajarao, R., Bhat, B.R. and Sahajwalla, V., Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs). Journal of Industrial and Engineering Chemistry, 2018. 65: p. 387-396.
9.Li, Z., et al., Carbonized Chicken Eggshell Membranes with 3D Architectures as High- Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012. 2(4): p. 431-437.
10.Aguayo-Villarreal, I.A., Bonilla-Petriciolet, A. and Muñiz-Valencia, R., Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. Journal of Molecular Liquids, 2017. 230: p. 686-695.
11.Xia, Y.X., Yang, Z.X. and Zhu, Y., Porous carbon-based materials for hydrogen storage: advancement and challenges. The Journal of Physical Chemistry A, 2007. 1(33): p. 9365-9381.
12.Sevilla, M., Mokaya, R., Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 2014. 7(4): p. 1250-1280.
13.Blankenship, T.S., Mokaya, R., Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy & Environmental Science, 2017. 10 (12): p. 2552–2562.
14.Li, S., et al., New efficient selective adsorbent of tobacco specific nitrosamines derived from discarded cigarette filters. Microporous and Mesoporous Materials, 2019. 284: p. 393-402.
15.Doyan, A., et al., Cigarette Butt Waste as Material for Phase Inverted Membrane Fabrication Used for Oil/Water Emulsion Separation. Polymers, 2021. 13(12): p.1907-1922.
16. Xiong, Q., et al., Nitrogen-doped hierarchical porous carbons from used cigarette filters for supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2019. 95: p. 315-323.
17.Zhao, Y.-Q., et al., Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 2016. 307: p. 391-400.
18.Hou, H., et al., The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode. Chemical Papers, 2019. 73(5): p. 1237-1246.
19.Pu, D., et al., Waste cigarette flters: activated carbon as a novel sorbent for uranium removal. Journal of Radioanalytical and Nuclear Chemistry, 2019. 320: p.725-731
20.Zhang, L.L., Zhou, R. and Zhao, X.S., Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010. 20(29): p. 5983.
21.Shao, Y., et al., Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018. 118(18): p. 9233-9280.
22.Chen, X., Paul, R. and Dai, L., Carbon-based supercapacitors for efficient energy storage. National Science Review, 2017. 4(3): p.453-489.
23.Wang, G., et al., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828.
24.Chang, C. C., Imae, T., Synergistic Performance of Composite Supercapacitors between Carbon Nanohorn and Conducting Polymer. ACS Sustainable Chemistry & Engineering, 2018. 6(4): p. 5162-5172.
25.Magu, T.O., et al., A Review on Conducting Polymers-Based Composites for Energy Storage Application. Journal of Chemical Review, 2019. 1: p. 19-34.
26.Yuan, C., et al., Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angewandte Chemie, 2014. 53: p. 1488-1504.
27.Jagadale, A.D., et al., Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochimica Acta, 2013. 98: p. 32-38.
28.Dubal, D.P., Jagadale, A.D. and Lokhande, C.D., Big as well as light weight portable, Mn3O4 based symmetric supercapacitive devices: Fabrication, performance evaluation and demonstration. Electrochimica Acta, 2012. 80: p. 160-170.
29.Wang, H., et al., Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. Journal of Materials Chemistry A, 2014. 2(9): p. 3223- 3230.
30.Lee, P.-Y., Lin, L.-Y., Synthesizing nickel-based transition bimetallic oxide via nickel precursor-free hydrothermal synthesis for battery supercapacitor hybrid devices. Journal of Colloid and Interface Science, 2019. 538: p. 297-307.
31.Chen, T.-Y., Lin, L.-Y., Morphology variation for the nickel cobalt molybdenum copper oxide with different metal ratios and their application on energy storage. Electrochimica Acta, 2019. 298: p. 745-755.
32.Dey, R.S., Hjuler, H.A. and Chi, Q., Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks. Journal of Materials Chemistry A, 2015. 3(12): p. 6324-6329.
33.Chiam, S.L., et al., Electrochemical Performance of Supercapacitor with Stacked Copper Foils Coated with Graphene Nanoplatelets. Scientific Reports, 2018. 8(1): p. 3093.
34.Scalia, A., et al., High energy and high voltage integrated photo-electrochemical double layer capacitor. Sustainable Energy & Fuels, 2018. 2(5): p. 968-977.
35.Korkmaz, S., Tezel, F.M. and Kariper, İ.A., Synthesis and Characterization of GO/V2O5 Thin Film Supercapacitor. Synthetic Metals, 2018. 242: p. 37-48.
36.Chiu, Y.-H.; Lin, L.-Y., Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2019. 101: p. 177-185.
37.Wang, Y., et al., High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. Scientific Reports, 2016. 6: p. 12883.
38.Hong, W.-L., Lin, L.-Y., Studying the substrate effects on energy storage abilities of flexible battery supercapacitor hybrids based on nickel cobalt oxide and nickel cobalt oxide@nickel molybdenum oxide. Electrochimica Acta, 2019. 308: p. 83-90.
39.Dou, Q., et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy & Environmental Science, 2018. 11: p. 3212-3219.
40.Yang, W., et al., Hierarchical NiCo2O4@NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. Journal of Materials Chemical A, 2014. 2(5): p.1448-1457.
41.El-Kady, M.F., et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences, 2015. 112(14): p. 4233-4238.
42.Wang, X., et al., Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. Royal Socity of Chemistry Advances, 2017. 7(38): p. 23859-23865.
43.Thangavel, R., et al., High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. J. Power Sources, 2018. 383: p.102-109.
44.Senthilkumar, S.T., Selvan, R.K. and Melo, J.S., Redox additive/active electrolytes: a novel approach toenhance the performance of supercapacitors. Journal of Materials Chemistry A, 2013. 1(40): p. 12386-12394.
45.Haque, M., et al., Ionic liquid electrolyte for supercapacitor with high temperature compatibility. Journal of Physics Conference series, 2017, 922(1): p. 012011.
46.Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p.7484-7539.
47.Wang, R., et al., Ni(OH)2 Nanoflowers/Graphene Hydrogels: A New Assembly for Supercapacitors. ACS Sustainable Chemistry & Engineering, 2016. 4(7): p. 3736-3742.
48.Chen, Y.M., et al., Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors. Nanotechnology, 2011. 22(11): p. 115706.
49.Chiu, J.-M., Lin, L.-Y., Tu, C.-C. and Yang, S.-S. Synthesis of the cobalt sulfide hydrangea macrophylla for the energy storage electrode. Journal of Applied Electrochemistry, 2017. 47(3): p. 393-404.
50.Chang, T.-W., et al., Enhanced electrocapacitive performance for the supercapacitor with tube-like polyaniline and graphene oxide composites. Electrochimica Acta, 2018. 259: p. 348-354.
51.Vijeth, H., et al., Polythiophene nanocomposites as high performance electrode material for supercapacitor application. AIP Conference Proceedings, 2018. 1942(1): p. 140017.
52.Ahmed, S., Ahmed, A. and Rafat, M. Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic andionic liquid based electrolytes. Journal of Saudi Chemical Society, 2018. 22(8): p. 993-1002.
53.Jung, S., et al., Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density. Scientific Reports, 2018. 8(1): p. 1915-1923.
54.Wang, W., et al., Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Scientific Reports, 2014. 4: p. 4452.
55.Yang, S.-S., et al., Methodology for synthesizing the nickel cobalt hydroxide/oxide and reduced graphene oxide complex for energy storage electrodes. Journal of Energy Storage, 2017. 14(1): p. 112-124.
56.Lin, L.-Y., et al., Synthesizing Ni-based ternary metal compounds for battery-supercapacitor hybrid devices with and without using nickel precursors. Materials Science in Semiconductor Processing. 2019. 98: p. 81-89.
57.Chang, C.C., Imae, T., Synergistic Performance of Composite Supercapacitors between Carbon Nanohorn and Conducting Polymer. ACS Sustainable Chemistry & Engineering, 2018. 6(4): p.5162-5172.
58.Magu, T.O., et al., A Review on Conducting Polymers-Based Composites for Energy Storage Application. Journal of Chemical Reviews, 2019. 1(1): p. 19-34.
59.Lin, L.-Y., et al., A novel core–shell multi-walled carbonnanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. Journal of Materials Chemistry A, 2013. 1(37): p. 11237-11245.
60.He, X., et al., Pseudocapacitance electrode and asymmetric supercapacitor based on biomass juglone/activated carbon composites. Royal Socity of Chemistry Advance, 2019. 9(53): p. 30809-30814.
61.Li, Z., et al., Hierarchical construction of high-performanceall-carbon flexible fiber supercapacitors with graphene hydrogel and nitrogen-doped graphene quantumdots. Carbon, 2019. 154: p. 410-419.
62.Zhang, L.L. and Zhao, X.S., Carbon-based materials as supercapacitor electrodes.Chemical Society Reviews, 2009. 38(9): p. 2520-31.
63.Li, Y.J., et al., Nitrogen and Sulfur Co-Doped Porous Carbon Nanosheets Derived from Willow Catkin for Supercapacitors. Nano Energy, 2016. 19: p. 165-175.
64.Alfredy, T., Jande, Y. A. C. and Pogrebnaya, T., Removal of lead ions from water by capacitive deionization electrode materials derived from chicken feathers. Journal of Water Reuse and Desalination, 2019. 9(3): p. 282-291.
65.Elisadiki, J., et al., Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes. Carbon, 2019. 147: p. 582-593.
66.Zhang, H., et al., Upcycling of PET waste into methane-rich gas and hierarchical porous carbon for high-performance supercapacitor by autogenic pressure pyrolysis and activation. Science of The Total Environment, 2021. 772(10): p. 145309.
67.Pham, T.H., et al., Adsorptive removal and recovery of organic pollutants from wastewater using waste paper-derived carbon-based aerogel. Chemosphere, 2021. 268: p. 129319.
68.Wu, H.Y., et al., Assessment of agricultural waste-derived activated carbon in multiple applications. Environmental Research, 2020. 191: p. 110176.
69.Smith, E.A., Novotny, T.E., Whose butt is it? Tobacco industry research about smokers and cigarette butt waste. Tobacco control, 2011. 20: p. 2-9.
70.Moerman, J., Potts, G., Analysis of metals leached from smoked cigarette litter. Tobacco Control, 2011. 20: p. 30-35.
71.Zhang, G., et al., Bamboo chopsticks-derived porous carbon microtubes/flakes composites for supercapacitor electrodes. Materials Letters, 2016. 185: p. 359-362.
72.Zhang, Y., Converting eggs to flexible, all-solid supercapacitors. Nano Energy, 2019. 65: p. 104045.
73.Fu, M., et al., Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon, 2019. 141: p. 748-757.
74.Gao, F., et al., Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta, 2016. 190: p. 1134-1141.
75.Lobato-Peralta, D.R., et al., Polymer superabsorbent from disposable diaper as a sustainable precursor for the development of stable supercapacitor electrode. Journal of Energy Storage, 2021. 40: p.102760.
76.Li, X., et al., Preparation of capacitor's electrode from sunflower seed shell. Bioresource Technology, 2011. 102(2): p. 1118-23.
77.Cui, X., Antonietti, M. and Yu, S.H., Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small, 2006. 2(6): p. 756-9.
78.Jia, Q., Lua, A.C., Effects of pyrolysis conditions on the physicalcharacteristics of oil-palm-shell activated carbons used in aque-ous phase phenol adsorption. Journal of Analytical and Applied Pyrolysis, 2008. 83(2): p. 175-179.
79.Haykiri-Acma, H., Yaman, S. and Kucukbayrak, S., Effect of heatingrate on the pyrolysis yields of rapeseed. Renew Energy, 2006. 31(6): p. 803-810.
80.Bouchelta, C., et al., Effects of pyrolysis conditions on the porous structure development of date pits activated carbon. Journal of Analytical and Applied Pyrolysis, 2012. 94: p. 215-222.
81.Para, J.B., et al., Effect of Gasification on The Porous Characteristics of ActivatedCarbon from A Semianthracite. Carbon, 1995. 33(6): p. 801-807.
82.Hazeleger, M.C.M. and Martinez, J.M.M., Microporosity development by CO2 activation of an anthracite studied by physical adsorption of gases, mercury porosimetry, and scanning electron microscopy. Carbon, 1992. 30(4): p. 695-709.
83.Wigmans, T., Industrial aspects of production and use of activated carbons. Carbon, 1989. 27: p. 13-22.
84.Nabais, J.M.V., et al., Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Processing Technology, 2008. 89(3): p. 262-268.
85.Ahmadpour, A., et al., The preparation of active carbons from coal by chemical and physical activation. Carbon, 1996. 34(4): p. 471-479.
86.Otowa, T., et al., Production and adsorption characteristics of MAXSORB: High -surface-area active carbon. Gas Separation & Purification, 1993. 7(4): p. 241- 245.
87.Caturla, F., et al., Preparation of activated carbon by chemical actibation with ZnCl2. Carbon, 1991. 29(7): p. 999-1007.
88.Guo, Y.P., David, A.R., Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Bioresource Technology, 2007. 98(8): p. 1513-1521.
89.Reddy, K.S.K., et al., A comparison of microstructure and adsorption characteristics of activated carbons by CO and H3PO4 activation from date palm pits. New Carbon Materials, 2012, 27( 5): p. 344-351.
90.Li, X., et al., Hazardous Petroleum Sludge-Derived Nitrogen and Oxygen Co-Doped Carbon Material with Hierarchical Porous Structure for High-Performance All-Solid-State Supercapacitors. Materials, 2021. 14(10): p. 2477.
91.Kuratani, K., et al., Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. Journal of Power Sources, 2011. 196(24): p. 10788-10790.
92.Kim, C., et al., Feasibility of bamboo-based activated carbons for an electrochemical supercapacitor electrode. Korean Journal of Chemical Engineering, 2006. 23(4): p. 592-594.
93.Chang, B., et al., Hierarchical porous carbon derived from recycled waste filter paper as high-performance supercapacitor electrodes. Royal Socity of Chemistry Advance, 2015. 5(88): p. 72019-72027
94.Boota, M., et al., Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life. ChemSusChem, 2015. 8(21): p. 3576-3581.
95.Sattayarut, V., et al., Preparation and electrochemical performance of nitrogen-enriched activated carbon derived from silkworm pupae waste. Royal Socity of Chemistry Advance, 2019. 9(18): p. 9878-9886.
96.Inkson, B.J., 2-Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016. p. 17-43.
97.Mubarak, S., et al., Enhanced Mechanical and Thermal Properties ofStereolithography 3D Printed Structures by the Eects of Incorporated Controllably AnnealedAnatase TiO2 Nanoparticles. Nanomaterials , 2020. 10(1): p. 79-103.
98.Dexheimer, S.L., Terahertz Spectroscopy: Principles and Applications. CRC Press, 2008.
99.Connelly, A., BET surface area. Science, 2017.
100.Lowell, S., Characterization of porous solids and powders: surface area, pore size and density. Particle Technology Series, 2004.
101.Heath, J. and Taylor, N., Raman Microscopy. John Wiley & Sons Ltd, 2017.
102.Sun, D. and Böhringer, K.F., Self-Cleaning: From Bio-Inspired Surface Modification to MEMS/Microfluidics System Integration. Micromachines, 2019. 10(2): p. 101.
103.Scholz, F., et al., Electroanalytical Methods. Guide to Experiments and Applications, 2010.
104.Hsia, B., Materials Synthesis and Characterization for Micro-supercapacitor Applications. PhD thesis, University of California, Berkeley, 2016.
105.Wang, Y., Ye, Z. and Ying, Y., New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors, 2012. 12(3): p. 3449-3471.
106.Kamal, M., et al., Synthesis and optimization of Novel Chitosan/Cellulose Acetate Natural Polymer Membrane for water treatment, Journal of advances in physics 2018. 14(1): p. 5303-5311.
107.Wu, Y.-S., Hsieh, T.-K., Resin Solidification at Low Temperature of GraphiteModification as Anode Materials for Lithium Ion Battery. Journal of China University of Science and Technology, 2011. 46: p. 15-32.
108.Son, I.H., et al., Graphene balls for lithium rechargeable batteries with fast chargingand high volumetric energy densities. Nature Communications, 2017. 8(1): p. 1561.
109.Zhang, B.B., et al., Progress in preparation of activated carbon and its activation mechanism. Modern Chemical Industry, 2014. 34(3): p. 34.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 製備氮摻雜石墨導電劑以提升碳基電極導電率應用於超級電容器
2. 以連續碳化和氧化法製備ZIF-67衍生四氧化三鈷和氮摻雜碳材複合材料應用於超級電容器
3. 結合共價有機框架與擬並聯串聯提升活性碳超級電容器表現
4. 利用咖啡渣與不同活化劑於一步合成法 製備活性碳應用於對稱型超級電容器 與其電化學儲能表現之探討
5. 聚吡咯奈米管及錳鈷氫氧化物製備硫摻雜鎳鈷層狀雙氫氧化物複合材料應用於超級電容器
6. 設計聚苯胺複合錳摻雜硫化鎳與鎳有機金屬框架衍生氫氧化鎳電極應用於超級電容器
7. 鋅與鎢摻雜釩酸鉍同質接面應用於光電化學水分解與石墨氮化碳複合鎳鈷硫化物應用於超級電容器
8. 使用金屬有機框架及衍生物作為助催化劑之鎢摻雜釩酸鉍光陽極光電化學性能探討
9. 製備電聚合聚吡咯碳纖維及金屬有機框架衍生碳材應用於柔性超級電容器
10. 以靜電紡絲原位合成ZIF-67無黏著劑電極及其錳鈷氧化物延伸物應用於柔性超級電容器
11. 添加二氧化鈦於膠態電解液以提升柔性超級電容器儲能能力
12. 原住民族傳統智慧創作保護條例中合理使用之認定-以奇美部落案為例
13. 高極性氟系高分子靜電紡絲應用於鋰離子固態電解質與壓電駐極體奈米發電
14. 應用深度強化學習於動態環境之智慧決策系統
15. 消費者使用行動支付受外在因素影響-以獎勵回饋為中介效果