跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:甘哲瑋
研究生(外文):GAN, ZHE-WEI
論文名稱:雙金屬奈米複合材料修飾電極應用於感測環境及生物樣品中的有害物質
論文名稱(外文):Bimetallic Nanoparticles Modified Electrode Applied to Sensing Harmful Substances in Environment and Biological Samples
指導教授:陳生明
指導教授(外文):CHEN, SHEN-MING
口試委員:陳生明鍾仁傑翁文慧駱碧秀黃國林
口試委員(外文):CHEN, SHEN-MINGCHUNG, REN-JEIWENG, WEN-HUILOU, BIH-SHOWHUANG, KUO-LIN
口試日期:2022-06-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:85
中文關鍵詞:電化學感測器混合材料雙金屬氧化物聲化學合成有害物質檢測
外文關鍵詞:Hybrid materialsElectrochemical sensorBimetal oxidesNeurotransmitter detectionFUD detectionSonochemical synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
第一部分
本研究中利用沸石咪唑結構材料(ZIF-67)的特性開發作為對乙酰氨基酚的感測器和比色法奈米酶的複合材料。ZIF-67主要透過三種不同的製備方法合成ZIF-67-C、ZIF-67-A 和 ZIF-67-H。接著透過使用X光繞射儀、高解析度場發射掃描式電子顯微鏡、穿透式電子顯微鏡進行表徵分析證實所合成的材料具有增加電催化活性的菱形十二面體結構。ZIF-67-C做為奈米酶時,所表現的電子親和力明顯高過於ZIF-67-A和ZIF-67-H。而 ZIF-67-A 和ZIF-67-H 與ZIF-67-C相比時,因為晶體排列和結晶較不完善導致對乙酰氨基酚檢測的性能較低。在河水以及湖水中的真實樣品下,我們針對乙酰氨基酚去做感測結果顯示該感測器在這兩種樣品中都出了具有良好的感測率。其中製備的ZIF-67-C樣品的高表面積、導電性、高孔隙率有利於雙感測應用,並確定可用於多種應用。
第二部分
本章節中,透過簡單方法合成氧化銅與氧化鋅複合材料(CZ)並開發作為對尼美舒利(NMS)的感測器,且透過使用X光繞射儀和高解析度場發射掃描式電子顯微鏡進行表徵分析並觀察出CZ的高度結晶性,且具有CZ的2D奈米薄片的行程。在使用CZ修飾的玻璃碳電極上,對NMS的電化學感測反應了更高的電催化性,添加的縣性範圍為0.299 µM 至 319.15 µM,檢測極限約為0.005µM,靈敏度約為7.152 µAµM-1 cm-2。CZ奈米複合材料與高導電材料的金屬氧化物相比,更適用於檢測具有豐富的活性位、高電導率、高表面積的藥物。
第三部分
我們製造了氧化鎳/氧化鋅 (NZ) 雙金屬氧化物複合材料並修飾在玻璃碳電極的表面,並將其用於檢測有害物質化合物蘆丁 (RT)。透過使用X光繞射儀、高解析度場發射掃描式電子顯微鏡、穿透式電子顯微鏡進行表徵分析,證實了NZ材料的成功形成。此外,NiO/ZnO/GCE具有更高的電子傳輸率和404 Ω電荷轉移電阻來體現出色的動力學性質。所提出的NiO/ZnO/GCE感測器在可行性分析上具有好的選擇性、再現性、儲存穩定性。最重要的是在血液和柳橙的即時監測分析上其回收結果相當精確。

First part:
The outgrowth of the zeolitic imidazole framework (ZIF-67) with substantial benefits was significantly used in the present study. The attractive properties of ZIF-67 are envisioned to develop a dual-functionalsensing platform as electrochemical and colorimetric for acetaminophen detection. Co-ZIF-67 wasdeveloped as a synthesis-controlled material via three different preparation techniques as ZIF-67-C, ZIF-67-A, and ZIF-67-H. ZIF-67-C prepared via simple co-precipitation strategy in room temperature ac-quired rhombic dodecahedral structure with increased electrocatalytic activity. ZIF-67-C nanozyme ex-hibits enzymatic activity with intrinsic peroxidase mimicking and higher electron affinity than ZIF-67-Aand ZIF-67-H. The well-developed ZIF-67-C without further aggregation and a steadily build structure resulted in an enhanced response. While the higher chance of aggregation and irregular arrangements ofZIF-67-A and ZIF-67-H resulted in lower performance toward acetaminophen detection. Moreover, theabsorption of Tetramethylbenzidine (TMB) molecules could lower the diffusion distance leading to improved peroxidase mimicking activity.
Second part:
This simple and cost-effective development of the CZ composite was characterized for evaluating the physical, chemical, and morphological properties. The highly crystalline nature of CZwas observed from powder X-ray diffraction and X-ray photoelectron spectroscopy analysis. The formation of 2D nanoflakes of CZ was strongly confirmed from field emission scanning electron microscopy and high-resolution transmission electron microscopy images. To verify the strong attachments, Fourier transforms infrared spectroscopy spectra were analyzed. Electrochemical sensing of NMS at CZ fabricated glassy carbon electrode reflects higher electrocatalytic activity with a linear range of NMS addition from 0.299 µM to 319.15 µM. The lower detection limit was about 0.005 µM with a sensitivity of 7.152 µAµM-1 cm2. The CZ nanocomposite will be more applicable for sensing several drugs with enriched active sites, higher conductivity, and large surface area raised fromlowcost metal oxides when compared with highly conducting materials.
Third part
We fabricated Nickel oxide/Zinc Oxide (NiO/ZnO) binary metal oxide composite on the superficial region of GCE and implemented it towards electrochemical detection of hazardous flavoring compound Rutin (RT). The successful formation of Nickel oxide/Zinc Oxide (NiO/ZnO) composite has been scrutinized through various microscopic and spectroscopic techniques. Further, NiO/ZnO/GCE tends to exemplify exquisite kinetic performance with a higher electron transfer rate and charge transfer resistance (Rct) of 404 Ω. The practical feasibility analysis of a proposed NiO/ZnO/GCE sensor features exemplary selectivity, repeatability, reproducibility, and storage stability. On top of that, the real-time monitoring analysis demonstrates exquisite recovery results in blood and orange samples.
摘要 i
ABSTRACT iii
目錄 vi
表目錄 ix
圖目錄 x
1 第一章 緒論 1
1.1 電化學分析簡介 1
1.2 感測器簡介 2
1.3 電極簡介 4
1.3.1 化學修飾電極 4
1.4 藥品簡介 5
1.4.1 對乙醯胺基酚(Acetaminophen) 5
1.4.2 黃酮(Flavonoids) 6
1.4.3 尼美舒利(Nimesulide) 6
2 第二章 實驗藥品、器材與分析方法 8
2.1 實驗藥品 8
2.2 實驗器材 9
2.3 分析方法 9
2.3.1 循環伏安法(Cyclic Voltammetry, CV) 9
2.3.2 微分脈衝伏安法 (Differential Pulse Voltammetry, DPV) 10
2.3.3 安培法(Amperometry) 11
2.3.4 電化學阻抗譜法(Electrochemical Impedance Spectroscopy,EIS) 12
2.3.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 13
2.3.6 X-射線繞射分析儀(X-ray diffractometer,XRD) 14
2.3.7 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 15
2.3.8 比表面積與孔隙度分析儀(Specific Surface Area & Pore Size Distribution Analyzer) 16
2.3.9 X射線光電子光譜法(X-ray photoelectron spectroscopy, XPS) 16
3 第三章 18
3.1 前言 18
3.2 實驗步驟 21
3.2.1 ZIF-67奈米薄片合成 21
3.2.2 製備ZIF-67奈米薄片修飾電極 21
3.2.3 真實樣品的製備 21
3.3 結果與討論 22
3.3.1 ZIF-67奈米薄片特徵分析 22
3.3.2 ZIF-67/GCE電化學特性分析 24
3.3.3 不同參數對ZIF-67-C修飾電極之影響 25
3.3.4 ZIF-67-C/GCE以微分脈衝伏安法(DPV)對ACM感測分析 28
3.3.5 穩定性、再現性、可重現性與真實樣品分析 30
3.4 比色法檢測ACM 33
3.4.1 研究ZIF-67-C的過氧化酶 33
3.4.2 ZIF-67-C過氧化酶催化活性的動力學分析 34
3.5 結論 36
4 第四章 37
4.1 前言 37
4.2 實驗步驟 39
4.2.1 氧化銅/氧化鋅奈米薄片(CZ)的合成 39
4.2.2 氧化銅/氧化鋅奈米薄片(CZ)修飾電極的製備 40
4.3 結果與討論 40
4.3.1 氧化銅/氧化鋅(CZ)奈米薄片特徵分析 40
4.3.2 CZ/GCE電化學特性分析 44
4.3.3 CZ/GCE對尼美舒利(NMS)的電化學感測 45
4.3.4 CZ/GCE以微分脈衝伏安法(DPV)對NMS感測分析 49
4.3.5 穩定性、再現性、可重現性與真實樣品分析 50
4.4 結論 54
5 第五章 56
5.1 前言 56
5.2 實驗步驟 58
5.2.1 NiO/ZnO(NZ)奈米薄片合成 58
5.2.2 真實樣品的製備 58
5.2.3 NiO/ZnO修飾電極製備 58
5.3 結果與討論 59
5.3.1 氧化鎳/氧化鋅與氧化鋅奈米薄片特徵分析 59
5.3.2 ZnO/GCE和NiO/ZnO/GCE電化學特性分析 61
5.3.3 NiO/ZnO/GCE對芸香苷(RT)的電化學感測 62
5.3.4 NiO/ZnO/GCE以微分脈衝伏安法(DPV)對RT感測分析 64
5.3.5 穩定性、再現性、可重現性與真實樣品分析 64
5.4 結論 67
參考文獻 68

1.李狄, 電化學原理. 北京航空航天大學出版社, 1991.1.
2.劉志廣、張華、李亞明, 儀器分析. 化學工業出版社, 2004: p. 26-44.
3.吳性良、朱萬森、馬林, 分析化學原理. 化學工業出版社, 2004: p. 177.
4.黃興閎, 感測器於實車碰撞測試之應用. 55雙月刊, 2006: p. 8-17.
5.施正雄, 化學感測器. 五南圖書出版股份有限公司, 2005: p. 4.
6.Allen J. Bard, L.R.F., Electrochemical Methods and Applications. 2001.
7.Wang, J., Analytical Electrochemistry 2nd ed. 2000.
8.邱馨卉, 製備奈米碳材與奈米金屬粒子複合薄膜修飾電極分別偵測過氧化氫、亞硝酸鹽和葡萄糖. 碩士論文, 104.7.
9.Johnston, J.J.S., P. J.; Primus, T. M.; Eisemann, J. D.; Hurley, J. C.; Kohler, , Risk assessment of an acetaminophen baiting program for chemical control of brown tree snakes on Guam: evaluation of baits, snake residues, and potential primary and secondary hazards. Environmental Science & Technology, 2002. 36(17): p. 3827-3833.
10.Meadows, I.G.-B., Sharon. The 10 Most Common Toxicoses in Dogs. Veterinary Medicine, 2006.
11.A. N. Panche, A.D.D.a.S.R.C., Flavonoids: an overview. Journal of Nutritional Science 2016. 5(47): p. 1-15.
12.劉茂煌, 分析化學實驗數位學習平台. 輔仁大學化學系, 2011.
13.吳森迪, 探討DNA電化學感測器之製程及其分析應用, in 化學工程與材料工程學系. 2011, 東海大學: 台中市. p. 106.
14.B. JillVenton, D.J.D., Voltammetry. Electrochemistry for Bioanalysis, 2020: p. 27-50.
15.劉侑昂, 碩士論文. 樹狀奈米金與RGo複合材料合成與其電化學感測之研究, 103.6.
16.Danfeng Jiang, J.P., Qiannan You, Tao Liu, Zhenyu Chu⁎, Wanqin Ji*, Simultaneous biosensing of catechol and hydroquinone via a truncated cubeshaped
Au/PBA nanocomposite. Biosensors and Bioelectronics, 2019. 125: p. 260-267.
17.羅聖全, 科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM). 科學研習. 5: p. 52-57.
18.Cowley, J.M., Diffraction physics North-Holland, Amsterdam, 1975: p. 10791-10796.
19.洪連輝, 穿透式電子顯微鏡. 國立彰化師範大學物理學系, 2009.09.
20.http://thuir.thu.edu.tw/retrieve/1957/098THU00442002-009.PDF".
21.https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6.
22.https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-22.html".
23.Zhu, L., et al., A new strategy for the development of efficient impedimetric tobramycin aptasensors with metallo-covalent organic frameworks (MCOFs). Food Chemistry, 2022. 366.
24.Lu, Z., et al., MOF-derived Co3O4/FeCo2O4 incorporated porous biomass carbon: Simultaneous electrochemical determination of dopamine, acetaminophen and xanthine. Journal of Alloys and Compounds, 2021. 858.
25.Chen, X., et al., Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Materials Science and Engineering C, 2016. 65: p. 80-89.
26.Hwa, K.Y., et al., Point of need simultaneous biosensing of pharmaceutical micropollutants with binder free conjugation of manganese stannate micro-rods on reduced graphene oxide in real-time analysis. Journal of the Taiwan Institute of Chemical Engineers, 2022. 131.
27.Liu, X., et al., A novel electrochemical sensor based on FeS anchored reduced graphene oxide nanosheets for simultaneous determination of dopamine and acetaminophen. Materials Science and Engineering C, 2017. 70: p. 628-636.
28.Wang, H., et al., Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta, 2018. 178: p. 188-194.
29.Qian, L., et al., An ultrasensitive electrochemical sensor for the detection of acetaminophen: Via a three-dimensional hierarchical nanoporous gold wire electrode. Analyst, 2021. 146(14): p. 4525-4534.
30.Wu, W., et al., Biomimetic design for enhancing the peroxidase mimicking activity of hemin. Nanoscale, 2019. 11(26): p. 12603-12609.
31.Wang, X., et al., Excellent peroxidase mimicking property of CuO/Pt nanocomposites and their application as an ascorbic acid sensor. Analyst, 2017. 142(13): p. 2500-2506.
32.Hu, L.B., et al., MoO3 structures transition from nanoflowers to nanorods and their sensing performances. Journal of Materials Science: Materials in Electronics, 2021. 32(19): p. 23728-23736.
33.Hu, K., et al., Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO–SnO2 hollow nanofibers with enhanced H2 gas sensing properties. Journal of Alloys and Compounds, 2021. 850.
34.Hwa, K.Y., et al., Synthesis of Nickel Vanadate Anchored on Reduced Graphene Oxide for Electrochemical Determination of Antioxidant Radical Cations of Diphenylamine H•+. ACS Applied Electronic Materials, 2021. 3(5): p. 2247-2260.
35.Wang, X., et al., An immunosensor using functionalized Cu2O/Pt NPs as the signal probe for rapid and highly sensitive CEA detection with colorimetry and electrochemistry dual modes. Sensors and Actuators, B: Chemical, 2021. 341.
36.Li, X., et al., Highly sensitive and specific colorimetric detection of phosphate by using Zr(Ⅳ) to synergistically suppress the peroxidase-mimicking activity of hydrophilic Fe3O4 nanocubes. Sensors and Actuators, B: Chemical, 2019. 297.
37.Wang, X.N., et al., Biomimetic catalysts of iron-based metal-organic frameworks with high peroxidase-mimicking activity for colorimetric biosensing. Dalton Transactions, 2021. 50(11): p. 3854-3861.
38.Keerthana, S., et al., Enzyme like-colorimetric sensing of H2O2 based on intrinsic peroxidase mimic activity of WS2 nanosheets anchored reduced graphene oxide. Journal of Alloys and Compounds, 2022. 889.
39.Kosman, J. and B. Juskowiak, Peroxidase-mimicking DNAzymes for biosensing applications: A review. Analytica Chimica Acta, 2011. 707(1-2): p. 7-17.
40.Jin, L., et al., Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. ACS Applied Materials and Interfaces, 2017. 9(11): p. 10027-10033.
41.Chen, C., Y. Wang, and D. Zhang, Peroxidase-like activity of vanadium tetrasulfide submicrospheres and its application to the colorimetric detection of hydrogen peroxide and L-cysteine. Microchimica Acta, 2019. 186(12).
42.Lu, C., et al., Multifunctional Janus Hematite-Silica Nanoparticles: Mimicking Peroxidase-Like Activity and Sensitive Colorimetric Detection of Glucose. ACS Applied Materials and Interfaces, 2015. 7(28): p. 15395-15402.
43.Hou, C., et al., Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale, 2015. 7(44): p. 18770-18779.
44.Zhu, J., et al., In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon, 2018. 129: p. 29-37.
45.He, Y., et al., A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. Journal of Materials Chemistry B, 2018. 6(36): p. 5750-5755.
46.Tang, Y., et al., Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS2Nanosheets. Journal of Agricultural and Food Chemistry, 2021. 69(9): p. 2884-2893.
47.Abazari, R., et al., PMo12@UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant. Applied Catalysis B: Environmental, 2021. 283.
48.Shen, Y., et al., Encapsulation of Ultrafine Metal-Organic Framework Nanoparticles within Multichamber Carbon Spheres by a Two-Step Double-Solvent Strategy for High-Performance Catalysts. ACS Applied Materials and Interfaces, 2021.
49.Abazari, R., et al., Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal-Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO2to Cyclic Carbonates. Inorganic Chemistry, 2021. 60(3): p. 2056-2067.
50.Zhang, B., et al., Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Advanced Materials, 2021.
51.Gayathri, S., P. Arunkumar, and J.H. Han, Scanty graphene-driven phase control and heteroatom functionalization of ZIF-67-derived CoP-draped N-doped carbon/graphene as a hybrid electrode for high-performance asymmetric supercapacitor. Journal of Colloid and Interface Science, 2021. 582: p. 1136-1148.
52.Nataraj, N., et al., Metal-organic framework (ZIF-67) interwoven multiwalled carbon nanotubes as a sensing platform for rapid administration of serotonin. Journal of the Taiwan Institute of Chemical Engineers, 2021. 129: p. 299-310.
53.Zhou, S., et al., Self-Sacrificial Template Strategy Coupled with Smart in Situ Seeding for Highly Oriented Metal-Organic Framework Layers: From Films to Membranes. Chemistry of Materials, 2017. 29(17): p. 7103-7107.
54.Saghir, S. and Z. Xiao, Hierarchical mesoporous ZIF-67@LDH for efficient adsorption of aqueous Methyl Orange and Alizarine Red S. Powder Technology, 2021. 377: p. 453-463.
55.Chen, X., et al., Doping ZIF-67 with transition metals results in bimetallic centers for electrochemical detection of Hg(II). Electrochimica Acta, 2021. 387.
56.Babulal, S.M., et al., Graphene oxide template based synthesis of NiCo2O4 nanosheets for high performance non-enzymatic glucose sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 621.
57.Becerra, J., et al., Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the E ffi cient sunlight-driven. Photoreduction of CO, 2020. 2: p. 1-6.
58.Nian, P., et al., ZnO Nanorod-Induced Heteroepitaxial Growth of SOD Type Co-Based Zeolitic Imidazolate Framework Membranes for H2 Separation. ACS Applied Materials and Interfaces, 2018. 10(4): p. 4151-4160.
59.Budi, C.S., et al., Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes. Journal of Hazardous Materials, 2021. 407.
60.Abazari, R., et al., High specific capacitance of a 3D-metal-organic framework-confined growth in CoMn2O4nanostars as advanced supercapacitor electrode materials. Journal of Materials Chemistry A, 2021. 9(17): p. 11001-11012.
61.Saliba, D., et al., Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. Journal of the American Chemical Society, 2018. 140(5): p. 1812-1823.
62.Chen, X., et al., Template-Sacrificing Strategy for Three-Dimensional CoMo-Layered Double-Hydroxide Nanopolyhedra for Electrochemical Sensing of Nitrite. ACS Applied Nano Materials, 2021. 4(2): p. 1867-1876.
63.Wang, Y., et al., Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sensors and Actuators, B: Chemical, 2021. 329.
64.Cai, Y., et al., Capsulation of AuNCs with AIE Effect into Metal-Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Analytical Chemistry, 2021. 93(19): p. 7275-7282.
65.Xu, M., et al., Hollow POM@MOF-derived Porous NiMo6@Co3O4 for Biothiol Colorimetric Detection. Chemistry - A European Journal, 2021. 27(35): p. 9141-9151.
66.Qian, J., F. Sun, and L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 2012. 82: p. 220-223.
67.Jafarinasab, M., et al., An Efficient Co-Based Metal-Organic Framework Nanocrystal (Co-ZIF-67) for Adsorptive Desulfurization of Dibenzothiophene: Impact of the Preparation Approach on Structure Tuning. Energy and Fuels, 2020. 34(10): p. 12779-12791.
68.Tang, J., et al., A sensitive acetaminophen sensor based on Co metal–organic framework (ZIF-67) and macroporous carbon composite. Rare Metals, 2022. 41(1): p. 189-198.
69.Wong, A., A.M. Santos, and O. Fatibello-Filho, Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS. Journal of Electroanalytical Chemistry, 2017. 799: p. 547-555.
70.Wang, L., et al., Electrochemical study of acetaminophen oxidation by gold nanoparticles supported on a leaf-like zeolitic imidazolate framework. Journal of Colloid and Interface Science, 2018. 524: p. 1-7.
71.Wu, C., et al., Simultaneous voltammetric determination of epinephrine and acetaminophen using a highly sensitive CoAl-OOH/reduced graphene oxide sensor in pharmaceutical samples and biological fluids. Materials Science and Engineering C, 2021. 119.
72.Shi, L., et al., Electrochemical sensor based on Au@Pt@Au/GO Nanohybrid for acetaminophen determination. International Journal of Electrochemical Science, 2021. 16: p. 1-10.
73.Zhang, Q.L., et al., A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchimica Acta, 2015. 182(3-4): p. 589-595.
74.Li, M. and L. Jing, Electrochemical behavior of acetaminophen and its detection on the PANI-MWCNTs composite modified electrode. Electrochimica Acta, 2007. 52(9): p. 3250-3257.
75.Liu, B., et al., Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta, 2016. 146: p. 114-121.
76.Guo, L., et al., Metal-organic framework precursors derived Ni-doping porous carbon spheres for sensitive electrochemical detection of acetaminophen. Talanta, 2021. 228.
77.Chen, X., et al., A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films. Sensors and Actuators, B: Chemical, 2012. 161(1): p. 648-654.
78.Annadurai, K., et al., Electrochemical sensor based on hydrothermally prepared nickel oxide for the determination of 4-acetaminophen in paracetamol tablets and human blood serum samples. Journal of Alloys and Compounds, 2021. 852.
79.Rohani Bastami, T. and Z. Dabirifar, AuNPs@PMo12nanozyme: Highly oxidase mimetic activity for sensitive and specific colorimetric detection of acetaminophen. RSC Advances, 2020. 10(59): p. 35949-35956.
80.Kumbhakar, P., et al., Emerging 2D metal oxides and their applications. Materials Today, 2021. 45: p. 142-168.
81.Sreekanth, T.V.M., et al., Integration of Marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions. Applied Catalysis B: Environmental, 2021. 285.
82.Miller, D.R., S.A. Akbar, and P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators, B: Chemical, 2014. 204: p. 250-272.
83.Díez-Ramírez, J., et al., Hydrogenation of CO2 to Methanol at Atmospheric Pressure over Cu/ZnO Catalysts: Influence of the Calcination, Reduction, and Metal Loading. Industrial and Engineering Chemistry Research, 2017. 56(8): p. 1979-1987.
84.Feng, Y., et al., Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene. Langmuir, 2018. 34(45): p. 13544-13549.
85.Gholami, M., et al., Photocatalytic removal of bentazon by copper doped zinc oxide nanorods: Reaction pathways and toxicity studies. Journal of Environmental Management, 2021. 294.
86.Tong, W., et al., Dramatic effects of gallium promotion on methanol steam reforming Cu-ZnO catalyst for hydrogen production: Formation of 5Å copper clusters from Cu-ZnGaOx. ACS Catalysis, 2013. 3(6): p. 1231-1244.
87.Zappa, D., et al., “Metal oxide -based heterostructures for gas sensors”- A review. Analytica Chimica Acta, 2018. 1039: p. 1-23.
88.Ghanbari, K. and S. Bonyadi, An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide-copper oxide p-n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan. New Journal of Chemistry, 2018. 42(11): p. 8512-8523.
89.Hwa, K.Y., A. Santhan, and S.K.S. Tata, Fabrication of Sn-doped ZnO hexagonal micro discs anchored on rGO for electrochemical detection of anti-androgen drug flutamide in water and biological samples. Microchemical Journal, 2021. 160.
90.Karuppiah, C., et al., A simple hydrothermal synthesis and fabrication of zinc oxide-copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. Sensors and Actuators, B: Chemical, 2015. 221: p. 1299-1306.
91.López, R., et al., Cupric oxide (CuO)/zinc oxide (ZnO) heterojunction diode with low turn-on voltage. Results in Physics, 2021. 22.
92.Khan, F.U., et al., An Astragalus membranaceus based eco-friendly biomimetic synthesis approach of ZnO nanoflowers with an excellent antibacterial, antioxidant and electrochemical sensing effect. Materials Science and Engineering C, 2021. 118.
93.Naseri, A., et al., Tuning Composition of Electrospun ZnO/CuO Nanofibers: Toward Controllable and Efficient Solar Photocatalytic Degradation of Organic Pollutants. Journal of Physical Chemistry C, 2017. 121(6): p. 3327-3338.
94.Prieto, G., et al., Quantitative relationship between support porosity and the stability of pore-confined metal nanoparticles studied on CuZnO/SiO2 methanol synthesis catalysts. ACS Nano, 2014. 8(3): p. 2522-2531.
95.Sun, X., et al., Surfactant-assisted hydrothermal synthesis and electrochemical properties of nanoplate-assembled 3D flower-like Cu3V2O 7(OH)2·2H2O microstructures. CrystEngComm, 2011. 13(1): p. 367-370.
96.Dral, A.P. and J.E. ten Elshof, 2D metal oxide nanoflakes for sensing applications: Review and perspective. Sensors and Actuators, B: Chemical, 2018. 272: p. 369-392.
97.George, J.M., A. Antony, and B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta, 2018. 185(7).
98.Jayaprakash, J., et al., Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol-gel method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015. 136(PC): p. 1803-1806.
99.Miao, Y., et al., Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2016. 462: p. 9-18.
100.Marlinda, A.R., et al., Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchimica Acta, 2015. 182(5-6): p. 1113-1122.
101.Wang, C., et al., Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine. Journal of Pharmaceutical and Biomedical Analysis, 2006. 42(2): p. 237-244.
102.Devarushi, U.S., et al. Electro oxidation and analytical applications of nimesulide at graphene oxide and reduced graphene oxide modified carbon paste electrode. in Materials Today: Proceedings. 2019.
103.Zhang, J., et al., Study of nimesulide and its determination using multiwalled carbon nanotubes modified glassy carbon electrodes. Electrochimica Acta, 2010. 55(7): p. 2522-2526.
104.Bukkitgar, S.D., et al., Electrochemical oxidation of nimesulide in aqueous acid solutions based on TiO2 nanostructure modified electrode as a sensor. Journal of Electroanalytical Chemistry, 2016. 778: p. 103-109.
105.Deroco, P.B., R.C. Rocha-Filho, and O. Fatibello-Filho, A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta, 2018. 179: p. 115-123.
106.Song, J., et al., Fluorescent boron and nitrogen co-doped carbon dots with high quantum yield for the detection of nimesulide and fluorescence staining. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019. 216: p. 296-302.
107.R. X. Chen, S.L.Z., J. Mao, Z. D. Cui, X. J. Yang, Y. Q. Liang, and Z. Y. Li Synthesis of CuO/Co3O4 Coaxial Heterostructures for Efficient and Recycling Photodegradation. 2015.
108.蔡泓哲, 以差式脈衝伏安法偵測乙硫醇. 碩士論文, 2012.7.
109.Shetti, N.P., et al., Amberlite XAD-4 modified electrodes for highly sensitive electrochemical determination of nimesulide in human urine. Microchemical Journal, 2020. 153.
110.Anupriya, J., et al., Facile Hydrothermal Synthesis of Cubic Zinc Ferrite Nanoparticles for Electrochemical Detection of Anti-inflammatory Drug Nimesulide in Biological and Pharmaceutical Sample. International Journal of Electrochemical Science, 2021. 16(7): p. 1-19.
111.Marcelina Łysoń, A.G., Beata Paczosa-Bator & Robert Piech, Nimesulide Determination on Carbon Black-Nafion Modified Glassy Carbon Electrode by Means of Adsorptive Stripping Voltammetry. Electrocatalysis, 2021. 12: p. 641-649.
112.Nandibewoor, S.J.M.a.S.T., Electrochemical Oxidation and Determination of Nimesulide Using a Carbon Paste Electrode. Z. Phys. Chem, 2013. 227: p. 73-87.
113.Zoulis, N.E. and C.E. Efstathiou, Preconcentration at a carbon-paste electrode and determination by adsorptive-stripping voltammetry of rutin and other flavonoids. Analytica Chimica Acta, 1996. 320(2-3): p. 255-261.
114.Gené, R.M., et al., Anti-inflammatory and analgesic activity of Baccharis trimera: Identification of its active constituents. Planta Medica, 1996. 62(3): p. 232-235.
115.Reynolds, J., Royal Pharmaceutical Society. Martindale: the extra pharmacopoeia:[evaluated information on the world’s drugs and medicines]. 1996, Royal Pharmaceutical Society London.
116.Ganeshpurkar, A. and A.K. Saluja, The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal, 2017. 25(2): p. 149-164.
117.Xu, H., et al., Determination of rutin with UV-Vis spectrophotometric and laser-induced fluorimetric detections using a non-scanning spectrometer. Analytical Letters, 2010. 43(6): p. 893-904.
118.Yang, D., et al., Determination of rutin by flow injection chemiluminescence method using the reaction of luminol and potassium hexacyanoferrate(III) with the aid of response surface methodology. Luminescence, 2010. 25(6): p. 436-444.
119.Lu, Q.h., C.d. Ba, and D.y. Chen, Investigating noncovalent interactions of rutin - serum albumin by capillary electrophoresis - frontal analysis. Journal of Pharmaceutical and Biomedical Analysis, 2008. 47(4-5): p. 888-891.
120.Shen, Y., et al., Validated reversed phase-high performance liquid chromatography-diode array detector method for the quantitation of Rutin, a natural immunostimulant for improving survival in aquaculture practice, in toonea sinensis folium. Pharmacognosy Magazine, 2012. 8(29): p. 49-53.
121.Abou-Donia, A.H., et al., Determination of rutin in Amaryllis belladonna L. flowers by HPTLC and spectrophotometry. Chromatographia, 2006. 64(1-2): p. 109-112.
122.Temerk, Y.M., H. Ibrahim, and W. Schuhmann, Cathodic adsorptive stripping voltammetric determination of the antitumor drug rutin in pharmaceuticals, human urine, and blood serum. Microchimica Acta, 2006. 153(1-2): p. 7-13.
123.Sun, W., et al., Application of poly(acridine orange) and graphene modifiedcarbon/ionic liquid paste electrode for the sensitive electrochemicaldetection of rutin. Electrochimica Acta, 2013. 109: p. 298-304.
124.fvcBalamurugan, M., et al., Temperature abetted synthesis of novel magnesium stannate nanoparticles assisted for nanomolar level detection of hazardous flavonoid in biological samples. Food Chemistry, 2021. 361.
125.Karimi-Maleh, H., et al., Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food and Chemical Toxicology, 2022. 162.
126.Karimi-Maleh, H., A.A. Ensafi, and A.R. Allafchian, Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode. Journal of Solid State Electrochemistry, 2010. 14(1): p. 9-15.
127.Mohanraj, J., et al., Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. Journal of Colloid and Interface Science, 2020. 566: p. 463-472.
128.Karimi-Maleh, H., et al., A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere, 2022. 291.
129.Karimi-Maleh, H., et al., Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. Journal of Hazardous Materials, 2022. 423.
130.Alavi-Tabari, S.A.R., M.A. Khalilzadeh, and H. Karimi-Maleh, Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. Journal of Electroanalytical Chemistry, 2018. 811: p. 84-88.
131.Jamali, T., H. Karimi-Maleh, and M.A. Khalilzadeh, A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT - Food Science and Technology, 2014. 57(2): p. 679-685.
132.Gordon, T.R., et al., Nonaqueous synthesis of TiO 2 nanocrystals using TiF 4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. Journal of the American Chemical Society, 2012. 134(15): p. 6751-6761.
133.Kida, T., T. Doi, and K. Shimanoe, Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chemistry of Materials, 2010. 22(8): p. 2662-2667.
134.Koventhan, C., et al., Polyol-assisted synthesis of spinel-type magnesium cobalt oxide nanochains for voltammetric determination of the antipsychotic drug thioridazine. Journal of Electroanalytical Chemistry, 2021. 898.
135.Emeline, A.V., et al., Effect of surface photoreactions on the photocoloration of a wide band gap metal oxide: Probing whether surface reactions are photocatalytic. Journal of Physical Chemistry B, 2005. 109(11): p. 5175-5185.
136.Gutowski, M., et al., Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2. Applied Physics Letters, 2002. 80(11): p. 1897-1899.
137.Mavrou, G., et al., Electrical properties of La2 O3 and Hf O2 La2 O3 gate dielectrics for germanium metal-oxide-semiconductor devices. Journal of Applied Physics, 2008. 103(1).
138.Chen, K., A.T. Bell, and E. Iglesia, The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions. Journal of Catalysis, 2002. 209(1): p. 35-42.
139.Ozer, N. and C.M. Lampert, Electrochromic characterization of sol-gel deposited coatings. Solar Energy Materials and Solar Cells, 1998. 54(1-4): p. 147-156.
140.Iwata, F., et al., Nanometer scale-electrochromic modification of NiO filmsusing a novel technique of scanning near-field optical microscopy. Solid State Ionics, 2003. 165(1-4): p. 7-13.
141.Chen, Y.W., et al., Size-controlled synthesis and optical properties of small-sized ZnO nanorods. Journal of Physical Chemistry C, 2009. 113(18): p. 7497-7502.
142.Chen, X., et al., Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 2017. 12(1).
143.Lin, D., H. Wu, and W. Pan, Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires. Advanced Materials, 2007. 19(22): p. 3968-3972.
144.Raoufi, D., Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy, 2013. 50: p. 932-937.
145.Cao, X.Y., et al., Preparation of ZnO-Coated LiV3O8 as cathode materials for rechargeable lithium batteries. International Journal of Electrochemical Science, 2011. 6(2): p. 270-278.
146.Asokan, K., et al., Nanocomposite ZnO-SnO 2 nanofibers synthesized by electrospinning method. Nanoscale Research Letters, 2010. 5(4): p. 747-752.
147.Irimpan, L., et al., Excitation wavelength dependent fluorescence behaviour of nano colloids of ZnO. Journal of Physics D: Applied Physics, 2007. 40(18): p. 5670-5674.
148.Gan, Y.X., et al., Hydrothermal Synthesis of Nanomaterials. Journal of Nanomaterials, 2020. 2020.
149.Si, W., et al., One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection. Ceramics International, 2020. 46(6): p. 7279-7287.
150.Muhammad, W., et al., Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. RSC Advances, 2019. 9(51): p. 29541-29548.
151.Fazlali, F., A.R. Mahjoub, and R. Abazari, A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sciences, 2015. 48: p. 263-269.
152.Muthukutty, B., et al., A novel high-performance electrocatalytic determination platform for voltammetric sensing of eugenol in acidic media using pyrochlore structured lanthanum stannate nanoparticles. Journal of Industrial and Engineering Chemistry, 2022. 106: p. 103-112.
153.Arumugam, B., et al., Ultrasonication-aided synthesis of nanoplates-like iron molybdate: Fabricated over glassy carbon electrode as an modified electrode for the selective determination of first generation antihistamine drug promethazine hydrochloride. Ultrasonics Sonochemistry, 2020. 66.
154.Şenocak, A., et al., A facile and synergetic strategy for electrochemical sensing of rutin antioxidant by Ce–Cr doped magnetite@rGO. Materials Chemistry and Physics, 2022. 275.
155.Veerakumar, P., et al., Development of Palladium on Bismuth Sulfide Nanorods as a Bifunctional Nanomaterial for Efficient Electrochemical Detection and Photoreduction of Hg(II) Ions. ACS Applied Materials and Interfaces, 2022. 14(4): p. 5908-5920.
156.Yang, S.L., et al., Synthesis of core/satellite donut-shaped ZnO–Au nanoparticles incorporated with reduced graphene oxide for electrochemical sensing of rutin. Electrochimica Acta, 2022. 412.
157.Mahmoud, A.M., et al., Fluorometric and electrochemical dual-mode detection of toxic flavonoid rutin based on new nitrogen and sulfur co-doped carbon dots: Enhanced selectivity based on masking the interfering flavonoids with BSA complexation. Journal of Food Composition and Analysis, 2022. 108.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊