|
1.Winter, M., B. Barnett, and K. Xu, Before Li Ion Batteries. Chem Rev, 2018. 118(23): p. 11433-11456. 2.Placke, T., et al., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry, 2017. 21(7): p. 1939-1964. 3.Goodenough, J.B. and K.S. Park, The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013. 135(4): p. 1167-76. 4.Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264. 5.Yang, Z., et al., Artificial interface stabilized LiNi0.80Co0.15Al0.05O2@Polysiloxane cathode for stable cycling lithium-ion batteries. Journal of Power Sources, 2020. 471. 6.XU, Z.-B., et al., urface modification of LiNi0. 8Co0. 15Al0. 05O2 (NCA) cathode material using phosphoric acid. Chinese Space Science and Technology, 2019. 39(4): p. 62. 7.Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2009. 22(3): p. 587-603. 8.Schmitz, R.W., et al., Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods. Progress in Solid State Chemistry, 2014. 42(4): p. 65-84. 9.Owen, J.R., Rechargeable lithium batteries. Chemical Society Reviews, 1997. 26(4): p. 259-267. 10.Hsieh, P.-Y., 台灣鋰離子電池儲能系統在電力市場應用現況、未來情境及發展機會初探, in 工業材料雜誌. 2021. 11.Peled, E. and S. Menkin, Review—SEI: Past, Present and Future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703-A1719. 12.Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341. 13.Balbuena, P.B. and Y.X. Wang, Lithium-ion batteries: solid-electrolyte interphase. 2004: World Scientific. 14.Heiskanen, S.K., J. Kim, and B.L. Lucht, Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule, 2019. 3(10): p. 2322-2333. 15.Bieker, G., M. Winter, and P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys, 2015. 17(14): p. 8670-9. 16.梁大宇, et al., 锂离子电池固态电解质界面膜 (SEI) 的研究进展. 储能科学与技术, 2018. 7(3): p. 418. 17.Zhang, S.S., K. Xu, and T.R. Jow, Study of the charging process of a LiCoO2-based Li-ion battery. Journal of Power Sources, 2006. 160(2): p. 1349-1354. 18.Lai, C.-M., et al., A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control. Energies, 2018. 11(3). 19.Chen, P.-T., et al., Moderate Energy for Charging Li-Ion Batteries Determined by First-Principles Calculations. Batteries & Supercaps, 2018. 1(6): p. 209-214. 20.Chen, P.T., et al., Reviving Aged Lithium‐Ion Batteries and Prolonging their Cycle Life by Sinusoidal Waveform Charging Strategy. Batteries & Supercaps, 2019. 2(8): p. 673-677. 21.Grolleau, S., et al., Calendar aging of commercial graphite/LiFePO4 cell – Predicting capacity fade under time dependent storage conditions. Journal of Power Sources, 2014. 255: p. 450-458. 22.Groot, J., et al., On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents. Journal of Power Sources, 2015. 286: p. 475-487. 23.Schmalstieg, J., et al., A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources, 2014. 257: p. 325-334. 24.Hellqvist Kjell, M., et al., Comparing aging of graphite/LiFePO 4 cells at 22 °C and 55 °C – Electrochemical and photoelectron spectroscopy studies. Journal of Power Sources, 2013. 243: p. 290-298. 25.Sharma, S.K., et al., Handbook of materials characterization. 2018: Springer. 26.Zhang, Z., et al., Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy. Matter, 2021. 4(1): p. 302-312. 27.Finšgar, M., 2-Mercaptobenzimidazole as a copper corrosion inhibitor: Part I. Long-term immersion, 3D-profilometry, and electrochemistry. Corrosion Science, 2013. 72: p. 82-89. 28.Ghanbari, A., M.M. Attar, and M. Mahdavian, Corrosion inhibition performance of three imidazole derivatives on mild steel in 1M phosphoric acid. Materials Chemistry and Physics, 2010. 124(2-3): p. 1205-1209. 29.Fernández Pulido, Y., et al., Determination of suitable parameters for battery analysis by Electrochemical Impedance Spectroscopy. Measurement, 2017. 106: p. 1-11. 30.Magar, H.S., R.Y.A. Hassan, and A. Mulchandani, Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors (Basel), 2021. 21(19). 31.Lasia, A., Electrochemical impedance spectroscopy and its applications, in Modern aspects of electrochemistry. 2002, Springer. p. 143-248. 32.Shigang, L., X. Jieru, and L. Hong, Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries. Energy Storage Science and Technology, 2018. 7(4): p. 732. 33.Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218. 34.Zen, J.-M., G. Ilangovan, and J.-J. Jou, Square-wave voltammetric determination and ac impedance study of dopamine on preanodized perfluorosulfonated ionomer-coated glassy carbon electrodes. Analytical Chemistry, 1999. 71(14): p. 2797-2805. 35.Winter, M. and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chemical reviews, 2004. 104(10): p. 4245-4270. 36.Devices, A., Electrochemical Impedance Spectroscopy (EIS) for Batteries, in Analog Devices. 37.洪悟清, et al., 使用天然石墨, 人造石墨, 與介相碳微球製備石墨烯之比較. 技術學刊, 2014. 29(3): p. 193-198. 38.刘云建, et al., 钴酸锂的再生及其电化学性能. 中国有色金属学报, 2007. 17(6): p. 984-989. 39.Tannous, C., Crystal structure, X-ray diffraction and Oblique geometry. European Journal of Physics, 2019. 41(1): p. 015501. 40.Popova, A.N., Crystallographic analysis of graphite by X-Ray diffraction. Coke and Chemistry, 2018. 60(9): p. 361-365. 41.He, H., et al., Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD. Electrochimica Acta, 2013. 92: p. 148-152. 42.Dudek, M., M. Sitarz, and P. Tomczyk, Effect of structural properties of carbon-based fuels on efficiency of direct carbon fuel cells. Journal of Solid State Electrochemistry, 2014. 18(11): p. 3023-3032. 43.Reimers, J.N. and J. Dahn, Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in Li x CoO2. Journal of the Electrochemical Society, 1992. 139(8): p. 2091. 44.Cheng, Q., et al., Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries. Sci Rep, 2017. 7(1): p. 14782. 45.Qi, Z. and G.M. Koenig, High-Performance LiCoO2Sub-Micrometer Materials from Scalable Microparticle Template Processing. ChemistrySelect, 2016. 1(13): p. 3992-3999. 46.Okubo, M., et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. Journal of the American chemical society, 2007. 129(23): p. 7444-7452. 47.Qiu, T., et al., The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. RSC Adv, 2019. 9(22): p. 12737-12746. 48.Rossen, E., J. Reimers, and J. Dahn, Synthesis and electrochemistry of spinel LTLiCoO2. Solid State Ionics, 1993. 62(1-2): p. 53-60. 49.Li, Z.Q., et al., X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 2007. 45(8): p. 1686-1695. 50.Páez Martínez, C.A., et al., Water‐Based Paintable LiCoO2 Microelectrodes: A High‐Rate Li‐Ion Battery Free of Conductive and Binder Additives. Advanced Materials Technologies, 2019. 4(11). 51.Kwon, N.H., et al., Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode. Electrochimica Acta, 2014. 134: p. 215-221. 52.Kuwata, N., et al., Detection of Degradation In2thin Films by in Situ Micro Raman Microscopy, in Solid State Ionics. 2012. p. 138-143. 53.Hara, K., et al., Raman Imaging Analysis of Local Crystal Structures in LiCoO2 Thin Films Calcined at Different Temperatures. Anal Sci, 2017. 33(7): p. 853-858. 54.Le Van‐Jodin, L., et al., Ex situ and operando study of LiCoO2 thin films by Raman spectroscopy: Thermal and electrochemical properties. Journal of Raman Spectroscopy, 2019. 50(10): p. 1594-1601. 55.马海宽, et al., 基于静电富集-表面增强拉曼光谱联用技术的抗生素检测. 中国激光, 2018. 45(2): p. 0207028. 56.Hardwick, L.J., et al., In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids, 2008. 69(5-6): p. 1232-1237. 57.Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87. 58.Rai, P. and S.K. Dubey, Raman Spectroscopy: A Potential Characterization Tool for Carbon Materials, in Handbook of Materials Characterization. 2018. p. 405-434. 59.Guo, P.-H., et al., Novel Triaxial Raman Scanning Platform for Evaluating Integrity of Graphite Electrodes in Li-Ion Batteries. IEEE Access, 2021. 9: p. 81895-81901.
|