跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭佩涵
研究生(外文):GUO, PEI-HAN
論文名稱:觀察正弦波和恆電流-恆電壓充電方法所引起鋰離子電池的電極衰退
論文名稱(外文):Ex-situ Observation for Electrode Degradation of Li-ion Batteries Caused by Sinusoidal Wave and CC-CV Charging
指導教授:鍾仁傑鍾仁傑引用關係段葉芳段葉芳引用關係
指導教授(外文):CHUNG, REN-JEIDUANN, YEH-FANG
口試委員:鍾仁傑段葉芳陳柏端莊程豪
口試委員(外文):CHUNG, REN-JEIDUANN, YEH-FANGCHEN, PO-TUANCHUANG, CHENG-HAO
口試日期:2022-06-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:89
中文關鍵詞:鋰離子電池正弦波充電法恆電流-恆電壓充電法石墨電極鋰鈷電極拉曼光譜儀X光繞射儀掃描電子顯微鏡
外文關鍵詞:Lithium-ion batterySinusoidal wave chargingCC-CV charginggraphite electrodelithium cobalt(III) oxideRaman spectroscopyX-ray diffractionscanning electron microscope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子電池在攜帶式電子設備的小型電池市場上佔據主導地位,且成功為電動汽車和固定式儲能的首選技術。鋰鈷電池為市面上電極結構穩定性最高且研究較完整的鋰離子電池,目前研究不同快速充電方式所造成電極之影響較少,尤其具有逆還原反應的正弦波充電,因此我們利用光譜、阻抗量測分析,探討不同快速充電方式及不同次數下的電極材料完整性。
鋰鈷電池的使用壽命及安全度與電極材料的結晶度密切相關,尤其是石墨電極為關鍵。為了觀察電極材料在多次充放電循環下電極材料損壞程度,此篇論文使用商用鋰鈷電極與石墨電極的電池作為實驗樣品,分別利用恆電流-恆電壓和正弦波充電法快速對電池充電,經過循環充放電100次、300次及500次後,應用各種電化學技術及檢測儀器,如電化學阻抗圖譜、拉曼光譜儀、X光繞射儀等。通過阻抗和光譜技術分析,比較不同快速充電循環下造成阻抗差異及對電極的損壞程度。
經過SEM、XRD、Raman對電極檢測,發現電池的正極鈷酸鋰材料結構穩定對兩種充電方法在500次循環下變化不明顯,但是對於石墨電極的損壞使用CC-CV的充電法較嚴重,且生成較多的SEI膜。本篇論文呈現利用不同充電方式及多種量測分析技術審視電極材料完整性,這些經驗對於未來開發新型材料電池可能仍然適用。
Lithium-ion batteries dominate markets of small-scale batteries for the use of portable electronics and successfully serve as a top-tiered choice for electric vehicles and stationary energy storage technologies. As one type of lithium-ion batteries, lithium-cobalt batteries has the highest electrode structural stability among other batteries in the market, and are studied more extensively. To date, research regarding the impact of different fast charging methods on electrodes is deficient, especially that involves the sinusoidal wave charging with reverse reduction reaction. Therefore, we use spectrum, impedance measurement and analysis to investigate the integrity of electrode materials under different fast charging methods and times.
The longevity and safety issues of lithium-cobalt batteries are correlated with the crystallinity of electrode materials, especially graphite electrodes. In order to observe the extent of damage to electrode materials under multiple charge-discharge cycles, batteries with commercial lithium cobalt electrodes and graphite electrodes are rapidly charged via constant current-constant voltage and sinusoidal wave charging methods, respectively. After 100, 300 and 500 charge and discharge cycles, a variety of electrochemical techniques and testing apparatuses, such as electrochemical impedance spectroscopy, Raman spectrometer, and X-ray diffractometer, etc, are applied. Through the impedance and spectroscopic analysis, the difference in electrodes impedance and the extent of damage to the electrodes under different fast charging cycles were compared.
After implementing SEM, XRD and Raman counter electrode testing, it was discovered that the structures of the lithium cobalt oxide positive electrode materials in the batteries were stable, not susceptible to change under 500 cycles of both charging methods. However, the damage to the graphite electrode using the CC-CV charging method was observable, with more SEI films engendered. This paper presents a framework of applying diverse charging methods, measurements and analytic techniques to interrogate the integrity of electrode materials. The experience from this research is applicable to the development in new battery materials in the foreseeable future.

摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 鋰離子電池 1
1.3 鋰離子電池作動機制 2
1.4 鋰離子電池材料與特性 4
1.4.1 電極 4
1.4.2 電解質(Electrolyte) 11
1.4.3 隔離膜(Separator) 13
1.5 鋰離子電池優缺點 13
1.6 固態電解質層 14
1.6.1 石墨電極的固態電解質層生成機制 14
1.6.2 石墨電極的固態電解質層組成 15
1.7 電池充電方式 17
1.7.1 恆電流-恆電壓充電法 18
1.7.2 正弦波充電法 19
1.8 研究動機 20
第二章 文獻回顧 21
2.1 電池老化 21
2.2 SEM對SEI膜之觀測 21
2.3 電化學阻抗圖譜(EIS) 23
2.3.1 等效電路模型 24
2.3.2 EIS對鋰離子電池之阻抗檢測 25
2.4 電極檢測 26
2.4.1 X光繞射儀對電極之檢測 26
2.4.2 拉曼光譜儀對電極之檢測 30
第三章 實驗流程與方法 35
3.1 實驗儀器 35
3.2 實驗流程 36
3.3 直流電源分析儀充放電參數 37
3.4 恆電位恆電流儀量測和分析技術 38
3.4.1 等效電路模型建立 39
3.5 場發射掃瞄式電子顯微鏡檢測技術 40
3.5.1 能量色散X射線光譜儀 42
3.6 X光繞射儀檢測技術 43
3.6.1 XRD數據處理 44
3.7 拉曼光譜學檢測技術 45
第四章 結果與討論 48
4.1 電池電容量 48
4.2 充放電循環溫度 50
4.3 電池阻抗 52
4.3.1 電池的奈奎斯特圖 52
4.3.2 電池之等效電路模型 55
4.4 電極之SEM圖譜 57
4.4.1 SEM之鈷酸鋰電極 57
4.4.2 EDS之鈷酸鋰電極 60
4.4.3 SEM之石墨電極 64
4.4.4 EDS之石墨電極 66
4.5 電極之XRD圖譜 69
4.5.1 XRD之鈷酸鋰電極 70
4.5.2 XRD之石墨電極 73
4.6 電極之拉曼圖譜 76
4.6.1 拉曼光譜之鈷酸鋰電極 76
4.6.2 拉曼光譜之石墨電極 79
第五章 結論 82
參考文獻 84
1.Winter, M., B. Barnett, and K. Xu, Before Li Ion Batteries. Chem Rev, 2018. 118(23): p. 11433-11456.
2.Placke, T., et al., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry, 2017. 21(7): p. 1939-1964.
3.Goodenough, J.B. and K.S. Park, The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013. 135(4): p. 1167-76.
4.Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
5.Yang, Z., et al., Artificial interface stabilized LiNi0.80Co0.15Al0.05O2@Polysiloxane cathode for stable cycling lithium-ion batteries. Journal of Power Sources, 2020. 471.
6.XU, Z.-B., et al., urface modification of LiNi0. 8Co0. 15Al0. 05O2 (NCA) cathode material using phosphoric acid. Chinese Space Science and Technology, 2019. 39(4): p. 62.
7.Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2009. 22(3): p. 587-603.
8.Schmitz, R.W., et al., Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods. Progress in Solid State Chemistry, 2014. 42(4): p. 65-84.
9.Owen, J.R., Rechargeable lithium batteries. Chemical Society Reviews, 1997. 26(4): p. 259-267.
10.Hsieh, P.-Y., 台灣鋰離子電池儲能系統在電力市場應用現況、未來情境及發展機會初探, in 工業材料雜誌. 2021.
11.Peled, E. and S. Menkin, Review—SEI: Past, Present and Future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703-A1719.
12.Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
13.Balbuena, P.B. and Y.X. Wang, Lithium-ion batteries: solid-electrolyte interphase. 2004: World Scientific.
14.Heiskanen, S.K., J. Kim, and B.L. Lucht, Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule, 2019. 3(10): p. 2322-2333.
15.Bieker, G., M. Winter, and P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys, 2015. 17(14): p. 8670-9.
16.梁大宇, et al., 锂离子电池固态电解质界面膜 (SEI) 的研究进展. 储能科学与技术, 2018. 7(3): p. 418.
17.Zhang, S.S., K. Xu, and T.R. Jow, Study of the charging process of a LiCoO2-based Li-ion battery. Journal of Power Sources, 2006. 160(2): p. 1349-1354.
18.Lai, C.-M., et al., A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control. Energies, 2018. 11(3).
19.Chen, P.-T., et al., Moderate Energy for Charging Li-Ion Batteries Determined by First-Principles Calculations. Batteries & Supercaps, 2018. 1(6): p. 209-214.
20.Chen, P.T., et al., Reviving Aged Lithium‐Ion Batteries and Prolonging their Cycle Life by Sinusoidal Waveform Charging Strategy. Batteries & Supercaps, 2019. 2(8): p. 673-677.
21.Grolleau, S., et al., Calendar aging of commercial graphite/LiFePO4 cell – Predicting capacity fade under time dependent storage conditions. Journal of Power Sources, 2014. 255: p. 450-458.
22.Groot, J., et al., On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents. Journal of Power Sources, 2015. 286: p. 475-487.
23.Schmalstieg, J., et al., A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources, 2014. 257: p. 325-334.
24.Hellqvist Kjell, M., et al., Comparing aging of graphite/LiFePO 4 cells at 22 °C and 55 °C – Electrochemical and photoelectron spectroscopy studies. Journal of Power Sources, 2013. 243: p. 290-298.
25.Sharma, S.K., et al., Handbook of materials characterization. 2018: Springer.
26.Zhang, Z., et al., Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy. Matter, 2021. 4(1): p. 302-312.
27.Finšgar, M., 2-Mercaptobenzimidazole as a copper corrosion inhibitor: Part I. Long-term immersion, 3D-profilometry, and electrochemistry. Corrosion Science, 2013. 72: p. 82-89.
28.Ghanbari, A., M.M. Attar, and M. Mahdavian, Corrosion inhibition performance of three imidazole derivatives on mild steel in 1M phosphoric acid. Materials Chemistry and Physics, 2010. 124(2-3): p. 1205-1209.
29.Fernández Pulido, Y., et al., Determination of suitable parameters for battery analysis by Electrochemical Impedance Spectroscopy. Measurement, 2017. 106: p. 1-11.
30.Magar, H.S., R.Y.A. Hassan, and A. Mulchandani, Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors (Basel), 2021. 21(19).
31.Lasia, A., Electrochemical impedance spectroscopy and its applications, in Modern aspects of electrochemistry. 2002, Springer. p. 143-248.
32.Shigang, L., X. Jieru, and L. Hong, Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries. Energy Storage Science and Technology, 2018. 7(4): p. 732.
33.Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
34.Zen, J.-M., G. Ilangovan, and J.-J. Jou, Square-wave voltammetric determination and ac impedance study of dopamine on preanodized perfluorosulfonated ionomer-coated glassy carbon electrodes. Analytical Chemistry, 1999. 71(14): p. 2797-2805.
35.Winter, M. and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chemical reviews, 2004. 104(10): p. 4245-4270.
36.Devices, A., Electrochemical Impedance Spectroscopy (EIS) for Batteries, in Analog Devices.
37.洪悟清, et al., 使用天然石墨, 人造石墨, 與介相碳微球製備石墨烯之比較. 技術學刊, 2014. 29(3): p. 193-198.
38.刘云建, et al., 钴酸锂的再生及其电化学性能. 中国有色金属学报, 2007. 17(6): p. 984-989.
39.Tannous, C., Crystal structure, X-ray diffraction and Oblique geometry. European Journal of Physics, 2019. 41(1): p. 015501.
40.Popova, A.N., Crystallographic analysis of graphite by X-Ray diffraction. Coke and Chemistry, 2018. 60(9): p. 361-365.
41.He, H., et al., Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD. Electrochimica Acta, 2013. 92: p. 148-152.
42.Dudek, M., M. Sitarz, and P. Tomczyk, Effect of structural properties of carbon-based fuels on efficiency of direct carbon fuel cells. Journal of Solid State Electrochemistry, 2014. 18(11): p. 3023-3032.
43.Reimers, J.N. and J. Dahn, Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in Li x CoO2. Journal of the Electrochemical Society, 1992. 139(8): p. 2091.
44.Cheng, Q., et al., Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries. Sci Rep, 2017. 7(1): p. 14782.
45.Qi, Z. and G.M. Koenig, High-Performance LiCoO2Sub-Micrometer Materials from Scalable Microparticle Template Processing. ChemistrySelect, 2016. 1(13): p. 3992-3999.
46.Okubo, M., et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. Journal of the American chemical society, 2007. 129(23): p. 7444-7452.
47.Qiu, T., et al., The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. RSC Adv, 2019. 9(22): p. 12737-12746.
48.Rossen, E., J. Reimers, and J. Dahn, Synthesis and electrochemistry of spinel LTLiCoO2. Solid State Ionics, 1993. 62(1-2): p. 53-60.
49.Li, Z.Q., et al., X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 2007. 45(8): p. 1686-1695.
50.Páez Martínez, C.A., et al., Water‐Based Paintable LiCoO2 Microelectrodes: A High‐Rate Li‐Ion Battery Free of Conductive and Binder Additives. Advanced Materials Technologies, 2019. 4(11).
51.Kwon, N.H., et al., Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode. Electrochimica Acta, 2014. 134: p. 215-221.
52.Kuwata, N., et al., Detection of Degradation In2thin Films by in Situ Micro Raman Microscopy, in Solid State Ionics. 2012. p. 138-143.
53.Hara, K., et al., Raman Imaging Analysis of Local Crystal Structures in LiCoO2 Thin Films Calcined at Different Temperatures. Anal Sci, 2017. 33(7): p. 853-858.
54.Le Van‐Jodin, L., et al., Ex situ and operando study of LiCoO2 thin films by Raman spectroscopy: Thermal and electrochemical properties. Journal of Raman Spectroscopy, 2019. 50(10): p. 1594-1601.
55.马海宽, et al., 基于静电富集-表面增强拉曼光谱联用技术的抗生素检测. 中国激光, 2018. 45(2): p. 0207028.
56.Hardwick, L.J., et al., In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids, 2008. 69(5-6): p. 1232-1237.
57.Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
58.Rai, P. and S.K. Dubey, Raman Spectroscopy: A Potential Characterization Tool for Carbon Materials, in Handbook of Materials Characterization. 2018. p. 405-434.
59.Guo, P.-H., et al., Novel Triaxial Raman Scanning Platform for Evaluating Integrity of Graphite Electrodes in Li-Ion Batteries. IEEE Access, 2021. 9: p. 81895-81901.
電子全文 電子全文(網際網路公開日期:20270720)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊