跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江震緯
研究生(外文):CHIANG, CHEN-WEI
論文名稱:以超臨界二氧化碳自萬壽菊中萃取葉黃素與抗氧化活性之研究
論文名稱(外文):Extraction of Lutein from Tagetes Erecta by Supercritical Carbon Dioxide and Antioxidant Activity Analysis
指導教授:蔡德華
指導教授(外文):TSAI, TEH-HUE
口試委員:蘇至善洪桂彬張裕祺
口試委員(外文):SU,CHIE-SHAANHONG, GUI-BINGCHANG, YU-CHI
口試日期:2022-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:121
中文關鍵詞:萬壽菊超臨界二氧化碳萃取葉黃素傅立葉轉換紅外光譜氣相層析質譜儀高效液相層析抗氧化活性
外文關鍵詞:Tagetes erectaSupercritical Carbon Dioxide ExtractionLuteinFTIRHPLCGC-MSAntioxidant Activity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
ABSTRACT II
目錄 IV
表目錄 VII
圖目錄 IX
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文研究架構 3
第2章 文獻回顧 5
2.1 超臨界流體萃取 5
2.1.1 超臨界流體介紹 5
2.1.2 超臨界流體性質 6
2.1.3 影響超臨界流體萃取效果之因素 6
2.1.4 超臨界流體萃取模式 8
2.1.5 超臨界流體萃取之現況 9
2.2 萬壽菊及葉黃素之簡介 10
2.2.1 葉黃素簡介及現況..………………………………………………………...11
2.3 使用HPLC測量萬壽菊萃取物之化學成分 12
2.4 自由基和抗氧化成分及機制 14
2.4.1 抗氧化機制 15
2.5 CENTRAL COMPOSITE DESIGN實驗設計法 18
2.6 常見的天然萃取方法 19
第3章 實驗藥品材料 20
3.1 實驗藥品材料 20
3.1.1 材料 20
3.1.2 藥品 20
3.2 實驗設備及方法 24
3.2.1 超臨界流體萃取實驗設備 24
3.2.2 儀器設備 27
3.2.3 實驗方法 30
3.2.3.1 高效能液相層析儀(HPLC) 30
3.2.3.2 紫外光與可見光光譜儀(UV-Vis) 32
• 抗氧化活性測試 32
• 總酚含量測定 39
3.2.3.3 傅立葉轉換紅外線光譜儀(FTIR) 41
3.2.3.4 氣相層析儀(GC-MS) 43
3.3 實驗流程 44
3.3.1 萃取參數確認 44
3.3.2 實驗設計法分析 44
3.3.3 檢測分析 45
第4章 結果與討論 48
4.1 萬壽菊鮮花前處理 48
4.2 萃取平衡時間 52
4.3 迴歸模式之選擇 53
4.4 變異數分析 55
4.4.1 萬壽菊萃取物產率變異數分析 55
4.4.1.1 Linear、2FI和Quadratic回歸模式分析 58
4.4.1.2 反應曲面分析 63
4.4.2 葉黃素總含量變異數分析 65
4.4.2.1 Linear、2FI和Quadratic回歸模式分析 68
4.4.2.2 反應曲面分析 73
4.5 HPLC檢測測定 75
4.6 抗氧化活性測試 76
4.7 總酚含量測試 76
4.8 萬壽菊萃取物定性分析 71
4.8.1 FTIR檢測分析 71
4.8.2 HPLC檢測分析 78
4.8.3 GC-MS檢測分析 93
第5章 結論 100
參考文獻 101
符號彙編 107
附錄 108
一、超臨界萃取實驗步驟 二、高效能液相質譜儀裝置步驟


1.Akkarachaneeyakorn, Suthida, Apinya Boonrattanakom, Pornchanok Pukpin, Samaporn Rattanawaraha and Nakarin Mattaweewong, “Extraction of Aril Oil from Gac (Momordica cochinchinensis Spreng) Using Supercritical Carbon Dioxide”, Journal of Food Processing and Preservation, 41(5), 1-12, 2017.
2.Kang, Jung Mook, Nayoung Kim, Bongcheol Kim, Joo-Hyon Kim, Bong-Yong Lee, Ji Hyun Park, Mi Kyoung Lee, Hye Seung Lee, Joo Sung Kim, Hyun Chae Jung and In Sung Song, “Enhancement of gastric ulcer healing and angiogenesis by cochinchina Momordica seed extract in rats”, Journal of Korean Medical Science, 25(6), 875-879, 2010.
3.Anandharamakrishnan, C., “A Treatise on Sub- and Supercritical Fluids: Versatile Domains and Applications”, Innovative Food Processing Technologies, A comprehensive review, 507-514, 2021.
4.Payel, Ghosh, Rama Chandra Pradhan, “Exposition on History and Potential of Supercritical Fluid Processing’’, Innovative Food Processing Technologies, A comprehensive review, 515-521, 2021
5.Liu, Wei-juan, “GC-MS Identification of Degradative Products from Catalytical Oxidation of Lutein’’, Chemistry and Industry of Forest Products,29(2), 85-89, 2009.
6.Hossein, Ahangari, Jerry W. King, Ali Ehsani and Mohammad Yousefi, ”Supercritical fluid extraction of seed oils – A short review of current trends” , Trends in Food Science & Technology, 111: 249-260, 2021.
7.Jonin, T. M., L. P. Adjadj and S. S. Rizvi, “Supercritical extraction”, Food Engineering, 3: 210-226, 2009.
8.Payel, Ghosh, Rama Chandra Pradhan, “Exposition on History and Potential of Supercritical Fluid Processing’’, Innovative Food Processing Technologies, A comprehensive review, 515-521, 2021..
9.Adil, Mouahid, Isabelle Bombarda, Magalie Claeys-Bruno, SandrineAmat, Emmanuelle Myotte, Jean-Paul Nisteron, Christelle Crampon, Elisabeth Badens, “Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination”, Journal of CO2 Utilization, 46: 101458, p10 ,2021.
10.Huang, Zhen, Xiao-han Shi and Wei-juan Jiang, “Theoretical models for supercritical fluid extraction” Journal of Chromatography A, 250: 2-26, 2012.
11.Saikat, Mitra, Abdur Rauf, Abu Montakim Tareq, “Potential health benefits of carotenoid lutein: An updated review’’, Food and Chemical Toxicology, 154, 112328, p13, 2021.
12.Khanyile, A. T., J. E. Andrew, V. Paul, “A comparative study of supercritical fluid extraction and accelerated solvent extraction of lipophilic compounds from lignocellulosic biomass’’, Sustainable Chemistry and Pharmacy, 26, 100608, p14, 2022.
13.Mariane, Meurer, Beatriz M.M.de Oliveira, “Extract of Tagetes erecta L., A medicinal plant rich in lutein, promotes gastric healing and reduces ulcer recurrence in rodents”, Journal of Ethnopharmacology, 293: 115258, p13, 2022.
14.Sirithon, Siriamornpun, Onanong Kaisoon, Naret Meeso, “Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes”, Journal of Functional Foods, 4: 757-766, 2012.
15.Mario, Ochoa, Becerra, Luis Mojica Contreras, “Lutein as a functional food ingredient: Stability and bioavailability’’, Journal of Functional Foods, 66: 103771, p12, 2020.
16.Leeson, S., L. Caston, “Enrichment of Eggs with Lutein’’, Poultry Science, 83(10), 1709-1712, 2004.
17.Enkhtaivan, Gansukh, Khine Khine Mya, “Lutein derived from marigold (Tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells’’, Food and Chemical Toxicology, 127: 11-18, 2019.
18.Roberta, Piccaglia, Mauro Marotti, Silvia Grandi, “Lutein and lutein ester content in different types of Tagetes patula and T. erecta’’, Industrial Crops and Products, 8: 45-51, 1998.
19.Wang, Hongmei, Zhang Lin, “Determination of Zeaxanthin and Lutein in Marigold by Normal Phase HPLC’’, Tianjin Rianlon Corporation, Tianjin 300384;2.School of Chinese Materia Medica, Tianjing Univerisity of Traditional Chinese Medicine, Tianjin, Journal of Anhui Agricultural Sciences, 284: 301617, p4, 2021.
20.Cao, Hongzhao, “Determination of Lutein in Stem of Marigold by HPLC’’, College of Pharmacy, Liaoning Medical University, Jinzhou, Journal of Mathematical Medicine, 23: 121001, p3, 2010.
21.Dušan, S. Dimić, Dejan A. Milenković, Edina H. Avdović, “Advanced oxidation processes of coumarins by hydroperoxyl radical: An experimental and theoretical study, and ecotoxicology assessment”, Chemical Engineering Journal, 424: 130331, p13, 2022.
22.Qingli, Wang, Dezhan Chen, Xuewei Liu, Lifeng Zhang, “Theoretical mechanisms of the superoxide radical anion catalyzed by the nickel superoxide dismutase”, Computational and Theoretical Chemistry, 966: 357-363, 2011.
23.Sies, Helmut, “Oxidative Stress: Eustress and Distress”, Physiology, Biochemistry, and Pathology, 3: 3-12, 2019.
24.Miguel-Chávez, Rubén San, “Phenolic Antioxidant Capacity: A Review of the State of the Art”, Phenolic Compounds - Biological Activity, 426, 60-74, 2017.
25.Miwa, Takatsuka, Satoru Goto, Kenshiro Kobayashi, “Evaluation of pure antioxidative capacity of antioxidants: ESR spectroscopy of stable radicals by DPPH and ABTS assays with singular value decomposition”, Food Bioscience, 2: 101714, p6, 2022.
26.Shiwangni, Rao, Abishek B.Santhakumar, Kenneth A. Chinkwo, “Q-TOF LC/MS identification and UHPLC-Online ABTS antioxidant activity guided mapping of barley polyphenols”, Food Chemistry, 266: 323-328, 2018.
27.黎正中、陳源樹,“實驗設計與分析”,高立圖書,2003。
28.Praveen, G., T. S. A. Suryakumari, “Simulation of wear process parameters of hybrid aluminium micro composite using ANOVA”, Materalstoday Proceedings, 26 Feb, 2021.
29.Esra, Altıok, Tuğçe Zeynep Kaya, Nur Hidayati Othman, “Investigations on the effects of operational parameters in reverse electrodialysis system for salinity gradient power generation using central composite design (CCD)”, the Chinese drug mubiezhi”, Desalination, 525: 115508, 2022.
30.Yong, Deng, Wenjun Wang, Shunan Zhao, “Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review”, Trends in Food Science & Technology, 122: 83-96, 2022.
31.Zhu, Wang, Ming Liu, Hui Yan, Junjie Yan, “Optimization on coordinate control strategy assisted by high-pressure extraction steam throttling to achieve flexible and efficient operation of thermal power plants”, Energy, 244: 122676, p11, 2022.
32.Xiaohua, Zhang, Yaohong Zhou, Wanming Xiong, “Critical role of solvent extraction sequence in the fractional separation of alkaline lignin”, Fuel, 322: 124268, p9, 2022.
33.Zhanlong, Song, Xinxin Wei, Mengmei Xie, Xiqiang Zhao, “Study on the microwave extraction process and product distribution of essential oils from citrus peel”, Chemical Engineering and Processing - Process Intensification, 171: 108726, p10, 2022.
34.Michael, W.Schäffer, Somdutta Sinha Roy, Shyamali Mukherjee, “Identification of lutein, a dietary antioxidant carotenoid in guinea pig tissues’’, Biochemical and Biophysical Research Communications, 374(2), 378-381, 2008.
35.Chaowalit, Monton, Natawat Chankana, “Optimization of supercritical carbon dioxide fluid extraction of seized cannabis and self-emulsifying drug delivery system for enhancing the dissolution of cannabis extract”, The Journal of Supercritical Fluids, 179: 105423, p10, 2022.
36.Prabesh, Joshi, Prachi Pahariya, Maadh F. Al-Ani, “NNB Monitoring and prediction of sensory shelf-life in strawberry with ultraviolet–visible – near-infrared (UV-VIS-NIR) spectroscopy”, Applied Food Research, 2: 100123, p9, 2022.
37.Maeve, Shannon, Jean-Louis Lafeuille, Aline Frégière-Salomon, “The detection and determination of adulterants in turmeric using fourier-transform infrared (FTIR) spectroscopy coupled to chemometric analysis and micro-FTIR imaging”, Food Control, 139: 109093, p8, 2022.
38.Liu, Wei-juan, “GC-MS Identification of Degradative Products from Catalytical Oxidation of Lutein’’, Chemistry and Industry of Forest Products,29(2), 85-89, 2009.
39.Rebecca, Bevans, “The p-value explained”, https://www.scribbr.com/statistics/p-value/, 2020.
40.余民寧,殘差分析,https://terms.naer.edu.tw/detail/1311349/,2000。
41.林惠玲、陳正倉,“現代統計學第二版”,雙葉書廊,2002。
42.Arun, Kumar, Patchaiyappan, “Isolation, application and biochemical characterization of colour component from Tecoma stans: A new cost effective and eco-friendly source of natural dye”, International Journal of Natural Products Research, 4: 9-11, 2014.
43.Department of Chemistry College of Letters & Science, “Simplified Infrared Correlation Chart”, https://www2.chem.wisc.edu/deptfiles/OrgLab/handouts/ Simplified%20IR%20Correlation%20Chart.pdf, 2018.

電子全文 電子全文(網際網路公開日期:20270701)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊