跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游旻瑾
研究生(外文):YU, MIN-CHIN
論文名稱:開發乳癌HER2-ECD之三明治型電化學免疫感測器
論文名稱(外文):Development of a Sandwich-type Electrochemical Immunosensor for the Detection of HER2-ECD from Breast Cancer
指導教授:鍾仁傑鍾仁傑引用關係段葉芳段葉芳引用關係
指導教授(外文):CHUNG, REN-JEIDUANN, YEH-FANG
口試委員:鍾仁傑段葉芳駱碧秀陳生明
口試委員(外文):CHUNG, REN-JEIDUANN, YEH-FANGLOU, BIH-SHOWCHEN, SHEN-MING
口試日期:2022-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:92
中文關鍵詞:乳癌HER2-ECD免疫感測器有機金屬框架碳化鈦
外文關鍵詞:Breast cancerHER2-ECDImmunosensorMetal Organic FrameworksMXene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳癌是全球女性發生率位居第一的癌症,死亡率為第二。近20年來發現另一個影響乳癌治療結果的危險因子是人類表皮生長因子受體(HER2),此受體過度表達會加速癌細胞分裂、轉移、造成抗藥性,導致治療失敗。因此,HER2基因是影響乳癌前兆的一個重要因素,大約有25%-30%左右的乳癌患者,受到體內癌細胞HER2基因過量表現的影響,刺激乳癌細胞以不受控制的方式生長和分裂,這被稱為HER2陽性乳腺癌。HER2之胞外區片段(ECD)於正常人血液中的濃度在2到15 ng ml-1之間,而患有陽性乳腺癌的患者的HER2-ECD濃度超過15 ng ml-1。
本研究利用Au/MXene與HER2-ECD抗體-1 (antibody-1, Ab1)修飾在拋棄式金電極上 (Disposable gold electrode, DGE),再利用NG/CuCoMn MOF衍生物(Nitrogen doped graphene/CuCoMn MOF derived material, 簡稱NG/CuCoMn MOFd)連接HER2-ECD抗體-2 (antibody-2, Ab2),並使用HER2-ECD抗原(antigen, Ag)連接Ab1/Au/MXene及NG/CuCoMn MOFd/Ab2形成NG/CuCoMn MOFd/Ab2/Ag/Ab1/Au/MXene/DGE三明治型免疫感測器。研究中利用X射線繞射儀(XRD)、傅立葉轉換紅外線光譜(FTIR)、化學能譜儀(XPS)、掃描式電子顯微鏡(SEM)確認其表徵,並使用電化學循環伏安法(CV)和微分脈伏安法(DPV)作電化學分析。利用DPV顯示感測器的電流響應對HER2-ECD具有線性關係,其線性範圍在1.0 × 10−4 至 50.0 ng mL−1,R2值為0.98247 (n=5, RSD<5%),偵測極限(LOD)為8.0 × 10−4 ng mL−1。此免疫感測器具有高選擇性、穩定性及再現性,以及利用真實樣品血清測量具有良好的回收率,有望用於乳癌的早期發現與診斷。

Breast cancer is the most frequently diagnosed cancer in women and ranks second among causes for cancer related death in women. Clinically, Human Epidermal growth Receptor 2 (HER2) is one of the most diagnostic biomarkers to facilitate breast cancer cell proliferation and malignant growth. The extracellular domain (ECD) of HER2 can be shed into the bloodstream. It can be quantified to provide an essential contribution to diagnostics and patient follow-up.
In this study, a sensitive sandwich-type electrochemical immunosensor was developed for the quantitative detection of HER2-ECD. Herein, a disposable gold electrode (DGE) modified by gold nanoparticles decorated Ti3C2Tx (Au/MXene) was utilized as a sensing platform to immobilize the primary antibody (Ab1/Au/MXene). Subsequently, nitrogen doped graphene with the copper-cobalt-manganese organic framework being calcinated (NG/CuCoMn MOF derived material) was tagged as NG/CuCoMn MOFd, which was used for labeling the secondary antibody (Ab2) to form a probe. Then, HER2-ECD antigen (Ag) was conjugated with Ab1/Au/MXene and NGO/MOF/Ab2. Lastly, the sandwich-type immunosensor (NG/CuCoMn MOFd/Ab2/Ag/Ab1/Au/MXene/DGE) was manufactured to detect HER2-ECD. The chemical structure, crystalline properties, and morphology of the materials were characterized by XRD, FTIR, Raman, XPS, FESEM, and TEM. Under optimized conditions, the prepared immunosensor displayed an excellent linear range of 1.0 × 10−4 to 50.0 ng mL−1, and the detection limit was 8.0 × 10−4 ng mL−1 . This immunosensor had high selectivity, good reproducibility, stability, and acceptable repeatability. Moreover, the proposed immunosensor showed good applicability for determining HER2-ECD in human and BALB/c Nude mice serum samples, indicating its ability to clinical monitor the tumor marker.

摘要 i
ABSTRACT iii
目錄 v
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 電化學感測器 3
2.1.1 生物感測器 5
2.1.2 免疫感測器 7
2.1.3網印刷電極於感測器上的應用 8
2.2 有機金屬框架 (Metal Organic Frameworks, MOFs) 10
2.2.1 ZIF-67 13
2.2.2 有機金屬框架 (Metal Organic Frameworks, MOFs)於感測器上的應用 15
2.3 氧化石墨烯(Graphene oxide, GO) 17
2.3.1 氮摻雜石墨烯 (Nitrogen-doped Graphene, NG) 18
2.3.2 氮摻雜石墨烯(Nitrogen-doped Graphene, NG) 於感測器上的應用 19
2.4 MXene 20
2.4.1 金奈米顆粒/碳化鈦(Au/MXene) 23
2.4.2 MXene於感測器上的應用 23
2.5 乳癌 24
2.5.1 人類表皮生長因子受體(HER2-ECD) 25
2.5.2 人類表皮生長因子受體(HER2-ECD)於感測器上的檢測 26
第三章 材料與方法 27
3.1 實驗藥品與儀器 27
3.1.1 實驗藥品 27
3.1.2 實驗儀器 29
3.2 實驗架構與儀器檢測 30
3.2.1 掃描式電子顯微鏡 31
3.2.2 穿透式電子顯微鏡 32
3.2.3 X射線繞射儀 33
3.2.3 X光光電子能譜 34
3.2.4 傅立葉轉換紅外線光譜儀 35
3.2.5 拉曼光譜 36
3.2.5 電化學分析儀 37
3.3 實驗步驟 39
3.3.1 銅鈷錳-有機金屬框架(CuCoMn MOF)的製備 39
3.3.2 氮摻雜孔洞石墨烯(NG)的製備 39
3.3.3 氮摻雜石墨烯/銅鈷錳-有機金屬框架(NG/CuCoMn MOF derived material)的製備 39
3.3.4 碳化鈦(MXene)的製備 40
3.3.5 金奈米顆粒/碳化鈦(Au/MXene)的製備 40
3.3.6 電極活化之步驟 40
3.3.7 HER2-ECD感測器之製備與檢測 41
3.3.8 TEM試片之製備 43
3.3.9 FESEM試片之製備 43
3.3.10 XPS試片之製備 43
3.3.11 細胞毒性測試 44
第四章 結果與討論 45
4.1 材料性質分析 45
4.1.1 場發式掃描式電子顯微鏡(FE-SEM) 45
4.1.2 穿透式電子顯微鏡(TEM) 48
4.1.3 X射線繞射分析(XRD) 50
4.1.4 化學能譜儀分析(XPS) 52
4.1.5 傅立葉轉換紅外線光譜(FT-IR) 55
4.1.6 拉曼光譜 56
4.2 電化學分析 57
4.2.1 不同組成修飾電極 57
4.2.2 抗體(Antibody)最佳修飾條件 58
4.2.3 牛血清蛋白(BSA)最佳修飾條件 60
4.2.4 抗原(Antigen)最佳修飾條件 61
4.2.5 pH值與溫度的最佳修飾條件 62
4.2.6 感測器的逐層電化學分析 64
4.2.7 不同掃描速率的分析 66
4.2.8 不同濃度之HER2-ECD測試 68
4.2.9 干擾測試 70
4.2.10 穩定性和再現性測試 71
4.3 真實樣品分析 74
4.3.1 酵素免疫法分析 74
4.3.2 真實樣品測試 76
4.4 體外試驗(In vitro test) 78
4.4.1 細胞毒性分析 78
4.4.2 動物血清測試 79
第五章 結論 81
參考文獻 82
1.Slamon, D.J., B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, and L. Norton, Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 2001. 344(11): p. 783-792.
2.Al‐Khafaji, Q., M. Harris, S. Tombelli, S. Laschi, A. Turner, M. Mascini, and G.J.E. Marrazza, An electrochemical immunoassay for HER2 detection. 2012. 24(4): p. 735-742.
3.Zhang, Q., A. Prabhu, A. San, J.F. Al-Sharab, and K. Levon, A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosensors and Bioelectronics, 2015. 72: p. 100-106.
4.Mirsky, V.M., M. Riepl, and O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997. 12(9): p. 977-989.
5.Limbut, W., M. Hedstrom, P. Thavarungkul, P. Kanatharana, and B. Mattiasson, Capacitive biosensor for detection of endotoxin. Analytical and Bioanalytical Chemistry, 2007. 389(2): p. 517-525.
6.Berggren, C., B. Bjarnason, and G. Johansson, An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step. Biosensors and Bioelectronics, 1998. 13(10): p. 1061-1068.
7.Aghaei, A., M.R. Milani Hosseini, and M. Najafi, A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochimica Acta, 2010. 55(5): p. 1503-1508.
8.Bandodkar, A.J., D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdés-Ramírez, F.J. Andrade, M.J. Schöning, and J. Wang, Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 2014. 54: p. 603-609.
9.Parrilla, M., R. Cánovas, and F.J. Andrade, Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids. Biosensors and Bioelectronics, 2017. 90: p. 110-116.
10.Wu, Z.-L., C.-K. Li, J.-G. Yu, and X.-Q. Chen, MnO2/reduced graphene oxide nanoribbons: Facile hydrothermal preparation and their application in amperometric detection of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017. 239: p. 544-552.
11.Musameh, M., J. Wang, A. Merkoci, and Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications, 2002. 4(10): p. 743-746.
12.Weng, C.-J., Y.-L. Chen, C.-M. Chien, S.-C. Hsu, Y.-S. Jhuo, J.-M. Yeh, and C.-F. Dai, Preparation of gold decorated SiO2@polyaniline core–shell microspheres and application as a sensor for ascorbic acid. Electrochimica Acta, 2013. 95: p. 162-169.
13.Chen, Y., J. Liu, Z. Yang, J.S. Wilkinson, and X. Zhou, Optical biosensors based on refractometric sensing schemes: A review. Biosensors and Bioelectronics, 2019. 144: p. 111693.
14.Mohanty, S.P.J.U.o.S.F., USA, Biosensors: a survey report. 2001.
15.Zhang, Z., Y. Cong, Y. Huang, and X.J.M. Du, Nanomaterials-based electrochemical immunosensors. 2019. 10(6): p. 397.
16.Comeaux, R. and P. Novotny, Biosensors: properties, materials and applications. 2009: Nova Science Publ.
17.Cheng, W., E. Stuart, K. Tschulik, J. Cullen, and R.J.N. Compton, A disposable sticky electrode for the detection of commercial silver NPs in seawater. 2013. 24(50): p. 505501.
18.Ravalli, A., G.P. Dos Santos, M. Ferroni, G. Faglia, H. Yamanaka, G.J.S. Marrazza, and A.B. Chemical, New label free CA125 detection based on gold nanostructured screen-printed electrode. 2013. 179: p. 194-200.
19.Falciola, L., V. Pifferi, and E.J.E. Mascheroni, Platinum‐Based and Carbon‐Based Screen Printed Electrodes for the Determination of Benzidine by Differential Pulse Voltammetry. 2012. 24(4): p. 767-775.
20.Nakthong, P., T. Kondo, O. Chailapakul, and W.J.A.M. Siangproh, Development of an unmodified screen-printed graphene electrode for nonenzymatic histamine detection. 2020. 12(44): p. 5407-5414.
21.Carrasco, S.J.B., Metal-organic frameworks for the development of biosensors: a current overview. 2018. 8(4): p. 92.
22.Liu, L., Y. Zhou, S. Liu, and M. Xu, The Applications of Metal−Organic Frameworks in Electrochemical Sensors. ChemElectroChem, 2018. 5(1): p. 6-19.
23.Fujita, M., Y.J. Kwon, S. Washizu, and K.J.J.o.t.A.C.S. Ogura, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4'-bipyridine. 1994. 116(3): p. 1151-1152.
24.Dong, Y., C. Duan, Q. Sheng, and J.J.A. Zheng, Preparation of Ag@ zeolitic imidazolate framework-67 at room temperature for electrochemical sensing of hydrogen peroxide. 2019. 144(2): p. 521-529.
25.Dong, P., L. Zhu, J. Huang, J. Ren, J.J.B. Lei, and Bioelectronics, Electrocatalysis of cerium metal-organic frameworks for ratiometric electrochemical detection of telomerase activity. 2019. 138: p. 111313.
26.Ding, Q., L. Cao, M. Liu, H. Lin, and D.-P.J.R.A. Yang, Au nanoparticle-loaded eggshell for electrochemical detection of nitrite. 2021. 11(7): p. 4112-4117.
27.Wang, H., Y. Jian, Q. Kong, H. Liu, F. Lan, L. Liang, S. Ge, J.J.S. Yu, and A.B. Chemical, Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. 2018. 257: p. 561-569.
28.Qiu, L.-G., Z.-Q. Li, Y. Wu, W. Wang, T. Xu, and X.J.C.c. Jiang, Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. 2008(31): p. 3642-3644.
29.Shi, Q., Z. Chen, Z. Song, J. Li, and J.J.A.C. Dong, Synthesis of ZIF‐8 and ZIF‐67 by steam‐assisted conversion and an investigation of their tribological behaviors. 2011. 123(3): p. 698-701.
30.Krokidas, P., M. Castier, S. Moncho, D.N. Sredojevic, E.N. Brothers, H.T. Kwon, H.-K. Jeong, J.S. Lee, and I.G.J.T.J.o.P.C.C. Economou, ZIF-67 framework: a promising new candidate for propylene/propane separation. experimental data and molecular simulations. 2016. 120(15): p. 8116-8124.
31.Yang, S., Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P.M.J.A.m. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. 2013. 25(17): p. 2452-2456.
32.Budi, C.S., J.R. Deka, W.-C. Hsu, D. Saikia, K.-T. Chen, H.-M. Kao, and Y.-C. Yang, Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes. Journal of Hazardous Materials, 2021. 407: p. 124392.
33.Yang, J. and J.J.J.E.c. Xu, Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions. 2003. 5(4): p. 306-311.
34.Zhong, G., D. Liu, and J.J.J.o.M.C.A. Zhang, The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. 2018. 6(5): p. 1887-1899.
35.Liu, S., C. Lai, X. Liu, B. Li, C. Zhang, L. Qin, D. Huang, H. Yi, M. Zhang, and L.J.C.C.R. Li, Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. 2020. 424: p. 213520.
36.Yi, F.Y., D. Chen, M.K. Wu, L. Han, and H.L.J.C. Jiang, Chemical sensors based on metal–organic frameworks. 2016. 81(8): p. 675-690.
37.Liu, L., Y. Zhou, S. Liu, and M.J.C. Xu, The applications of metal− organic frameworks in electrochemical sensors. 2018. 5(1): p. 6-19.
38.Yang, L., C. Xu, W. Ye, and W. Liu, An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sensors and Actuators B: Chemical, 2015. 215: p. 489-496.
39.Liu, X., M. Hu, M. Wang, Y. Song, N. Zhou, L. He, and Z. Zhang, Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosensors and Bioelectronics, 2019. 123: p. 59-68.
40.Saraf, M., R. Rajak, and S.M.J.J.o.M.C.A. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. 2016. 4(42): p. 16432-16445.
41.Yu, Y., Z. Chen, L. Shi, F. Yang, J. Pan, B. Zhang, and D.J.A.c. Sun, Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification. 2014. 86(16): p. 8200-8205.
42.Zhang, Y., J. Xu, J. Xia, F. Zhang, Z.J.A.a.m. Wang, and interfaces, MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing. 2018. 10(45): p. 39151-39160.
43.Agrawal, A. and G.-C. Yi, Chapter Two - Sample pretreatment with graphene materials, in Comprehensive Analytical Chemistry, C.M. Hussain, Editor. 2020, Elsevier. p. 21-47.
44.Marcano, D.C., D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M.J.A.n. Tour, Improved synthesis of graphene oxide. 2010. 4(8): p. 4806-4814.
45.Das, S., P. Sudhagar, Y.S. Kang, W.J.C.N.f.A.E.S.A.i.M.S. Choi, and D. Applications, Synthesis and characterization of graphene. 2015: p. 85-131.
46.Staudenmaier, L.J.B.d.d.c.G., Verfahren zur darstellung der graphitsäure. 1898. 31(2): p. 1481-1487.
47.William, S.J.P.o.G.O.J.A.C.S., Hummers J, Offeman RE. 1958. 80: p. 1339.
48.Liu, Y., K. Yan, O.K. Okoth, J.J.B. Zhang, and Bioelectronics, A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. 2015. 74: p. 1016-1021.
49.Long, D., W. Li, L. Ling, J. Miyawaki, I. Mochida, and S.-H.J.L. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. 2010. 26(20): p. 16096-16102.
50.Meng, F., J. Li, S.K. Cushing, M. Zhi, and N.J.J.o.t.A.C.S. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. 2013. 135(28): p. 10286-10289.
51.Hummers Jr, W.S. and R.E.J.J.o.t.a.c.s. Offeman, Preparation of graphitic oxide. 1958. 80(6): p. 1339-1339.
52.Chen, F., L. Guo, X. Zhang, Z.Y. Leong, S. Yang, and H.Y.J.N. Yang, Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. 2017. 9(1): p. 326-333.
53.Zhang, H., S.J.J.o.A. Liu, and Compounds, Electrochemical sensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid. 2020. 842: p. 155873.
54.Lu, Z., Y. Li, T. Liu, G. Wang, M. Sun, Y. Jiang, H. He, Y. Wang, P. Zou, X. Wang, Q. Zhao, and H. Rao, A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chemical Engineering Journal, 2020. 389: p. 124417.
55.Chen, S., M. Shi, Q. Xu, J. Xu, X. Duan, Y. Gao, L. Lu, F. Gao, X. Wang, and Y.J.N. Yu, Ti3C2T x MXene/nitrogen-doped reduced graphene oxide composite: a high-performance electrochemical sensing platform for adrenaline detection. 2021. 32(26): p. 265501.
56.Lu, H., H. Cui, D. Duan, L. Li, and Y.J.A. Ding, A novel molecularly imprinted electrochemical sensor based on a nitrogen-doped graphene oxide quantum dot and molybdenum carbide nanocomposite for indometacin determination. 2021. 146(23): p. 7178-7186.
57.Zheng, H., P. Zheng, L. Zheng, Y. Jiang, Z. Wu, F. Wu, L. Shao, Y. Liu, and Y. Zhang, Nitrogen-Doped Graphene Quantum Dots Synthesized by C60/Nitrogen Plasma with Excitation-Independent Blue Photoluminescence Emission for Sensing of Ferric Ions. The Journal of Physical Chemistry C, 2018. 122(51): p. 29613-29619.
58.Naguib, M., M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W.J.A.m. Barsoum, Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. 2011. 23(37): p. 4248-4253.
59.Naguib, M., O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W.J.A.n. Barsoum, Two-dimensional transition metal carbides. 2012. 6(2): p. 1322-1331.
60.Naguib, M., J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W.J.J.o.t.A.C.S. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. 2013. 135(43): p. 15966-15969.
61.Meshkian, R., L.-Å. Näslund, J. Halim, J. Lu, M.W. Barsoum, and J.J.S.M. Rosen, Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. 2015. 108: p. 147-150.
62.Zhou, J., X. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, and Q.J.A.C.I.E. Huang, A two‐dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. 2016. 55(16): p. 5008-5013.
63.Zhou, J., X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, and P.J.A.n. Eklund, Synthesis and electrochemical properties of two-dimensional hafnium carbide. 2017. 11(4): p. 3841-3850.
64.Ling, Z., C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, and Y.J.P.o.t.N.A.o.S. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. 2014. 111(47): p. 16676-16681.
65.Zhao, M.Q., C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, and Y.J.A.m. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. 2015. 27(2): p. 339-345.
66.Luo, J., W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, and Y.J.A.n. Gan, Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. 2017. 11(3): p. 2459-2469.
67.Luo, J., C. Fang, C. Jin, H. Yuan, O. Sheng, R. Fang, W. Zhang, H. Huang, Y. Gan, and Y.J.J.o.M.C.A. Xia, Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. 2018. 6(17): p. 7794-7806.
68.Sun, W., S. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, and M.J.J.o.M.C.A. Green, Electrochemical etching of Ti 2 AlC to Ti 2 CT x (MXene) in low-concentration hydrochloric acid solution. 2017. 5(41): p. 21663-21668.
69.Pang, S.-Y., Y.-T. Wong, S. Yuan, Y. Liu, M.-K. Tsang, Z. Yang, H. Huang, W.-T. Wong, and J.J.J.o.t.A.C.S. Hao, Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. 2019. 141(24): p. 9610-9616.
70.Li, Y., H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, and P.J.N.M. Persson, Å.; Eklund, P.; Hultman, L.; Li, M. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. 2020. 19(8): p. 894-899.
71.Kamysbayev, V., A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, and D.V.J.S. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. 2020. 369(6506): p. 979-983.
72.Yang, Y., X. Jiang, J. Chao, C. Song, B. Liu, D. Zhu, Y. Sun, B. Yang, Q. Zhang, and Y.J.S.C.M. Chen, Synthesis of magnetic core-branched Au shell nanostructures and their application in cancer-related miRNA detection via SERS. 2017. 60(11): p. 1129-1144.
73.Mathiyazhakan, M., P.K. Upputuri, K. Sivasubramanian, A. Dhayani, P.K. Vemula, P. Zou, K. Pu, C. Yang, M. Pramanik, and C.J.S.C.M. Xu, In situ synthesis of gold nanostars within liposomes for controlled drug release and photoacoustic imaging. 2016. 59(11): p. 892-900.
74.Li, K., T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, and Q.J.S.C.M. Peng, Fabrication of tunable hierarchical MXene@ AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. 2018. 61(5): p. 728-736.
75.Sinha, A., Dhanjai, S.M. Mugo, J. Chen, and K.S. Lokesh, 14 - MXene-based sensors and biosensors: next-generation detection platforms, in Handbook of Nanomaterials in Analytical Chemistry, C. Mustansar Hussain, Editor. 2020, Elsevier. p. 361-372.
76.Sun, S., M. Wang, X. Chang, Y. Jiang, D. Zhang, D. Wang, Y. Zhang, Y.J.S. Lei, and A.B. Chemical, W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. 2020. 304: p. 127274.
77.Zhong, W., F. Gao, J. Zou, S. Liu, M. Li, Y. Gao, Y. Yu, X. Wang, and L.J.F.C. Lu, MXene@ Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples. 2021. 360: p. 130006.
78.Medetalibeyoglu, H., G. Kotan, N. Atar, and M.L. Yola, A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta, 2020. 220: p. 121403.
79.Murugan, N., R. Jerome, M. Preethika, A. Sundaramurthy, and A.K. Sundramoorthy, 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Journal of Materials Science & Technology, 2021. 72: p. 122-131.
80.Ward, E.M., C.E. DeSantis, C.C. Lin, J.L. Kramer, A. Jemal, B. Kohler, O.W. Brawley, and T.J.C.a.c.j.f.c. Gansler, Cancer statistics: breast cancer in situ. 2015. 65(6): p. 481-495.
81.Waks, A.G. and E.P.J.J. Winer, Breast cancer treatment: a review. 2019. 321(3): p. 288-300.
82.Mishra, A. and M.J.C. Verma, Cancer biomarkers: are we ready for the prime time? 2010. 2(1): p. 190-208.
83.Marques, R.C., S. Viswanathan, H.P. Nouws, C. Delerue-Matos, and M.B.J.T. González-García, Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. 2014. 129: p. 594-599.
84.Yola, M.L.J.M.A., Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. 2021. 188(3): p. 1-13.
85.Shamsipur, M., M. Emami, L. Farzin, R.J.B. Saber, and Bioelectronics, A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. 2018. 103: p. 54-61.
86.Hartati, Y.W., L.K. Letelay, S. Gaffar, S. Wyantuti, H.H.J.S. Bahti, and B.-S. Research, Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. 2020. 27: p. 100316.
87.Arkan, E., R. Saber, Z. Karimi, and M. Shamsipur, A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Analytica Chimica Acta, 2015. 874: p. 66-74.
88.Qian, J., F. Sun, and L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 2012. 82: p. 220-223.


電子全文 電子全文(網際網路公開日期:20240210)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top