|
1.Slamon, D.J., B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, and L. Norton, Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 2001. 344(11): p. 783-792. 2.Al‐Khafaji, Q., M. Harris, S. Tombelli, S. Laschi, A. Turner, M. Mascini, and G.J.E. Marrazza, An electrochemical immunoassay for HER2 detection. 2012. 24(4): p. 735-742. 3.Zhang, Q., A. Prabhu, A. San, J.F. Al-Sharab, and K. Levon, A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosensors and Bioelectronics, 2015. 72: p. 100-106. 4.Mirsky, V.M., M. Riepl, and O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997. 12(9): p. 977-989. 5.Limbut, W., M. Hedstrom, P. Thavarungkul, P. Kanatharana, and B. Mattiasson, Capacitive biosensor for detection of endotoxin. Analytical and Bioanalytical Chemistry, 2007. 389(2): p. 517-525. 6.Berggren, C., B. Bjarnason, and G. Johansson, An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step. Biosensors and Bioelectronics, 1998. 13(10): p. 1061-1068. 7.Aghaei, A., M.R. Milani Hosseini, and M. Najafi, A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochimica Acta, 2010. 55(5): p. 1503-1508. 8.Bandodkar, A.J., D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdés-Ramírez, F.J. Andrade, M.J. Schöning, and J. Wang, Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 2014. 54: p. 603-609. 9.Parrilla, M., R. Cánovas, and F.J. Andrade, Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids. Biosensors and Bioelectronics, 2017. 90: p. 110-116. 10.Wu, Z.-L., C.-K. Li, J.-G. Yu, and X.-Q. Chen, MnO2/reduced graphene oxide nanoribbons: Facile hydrothermal preparation and their application in amperometric detection of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017. 239: p. 544-552. 11.Musameh, M., J. Wang, A. Merkoci, and Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications, 2002. 4(10): p. 743-746. 12.Weng, C.-J., Y.-L. Chen, C.-M. Chien, S.-C. Hsu, Y.-S. Jhuo, J.-M. Yeh, and C.-F. Dai, Preparation of gold decorated SiO2@polyaniline core–shell microspheres and application as a sensor for ascorbic acid. Electrochimica Acta, 2013. 95: p. 162-169. 13.Chen, Y., J. Liu, Z. Yang, J.S. Wilkinson, and X. Zhou, Optical biosensors based on refractometric sensing schemes: A review. Biosensors and Bioelectronics, 2019. 144: p. 111693. 14.Mohanty, S.P.J.U.o.S.F., USA, Biosensors: a survey report. 2001. 15.Zhang, Z., Y. Cong, Y. Huang, and X.J.M. Du, Nanomaterials-based electrochemical immunosensors. 2019. 10(6): p. 397. 16.Comeaux, R. and P. Novotny, Biosensors: properties, materials and applications. 2009: Nova Science Publ. 17.Cheng, W., E. Stuart, K. Tschulik, J. Cullen, and R.J.N. Compton, A disposable sticky electrode for the detection of commercial silver NPs in seawater. 2013. 24(50): p. 505501. 18.Ravalli, A., G.P. Dos Santos, M. Ferroni, G. Faglia, H. Yamanaka, G.J.S. Marrazza, and A.B. Chemical, New label free CA125 detection based on gold nanostructured screen-printed electrode. 2013. 179: p. 194-200. 19.Falciola, L., V. Pifferi, and E.J.E. Mascheroni, Platinum‐Based and Carbon‐Based Screen Printed Electrodes for the Determination of Benzidine by Differential Pulse Voltammetry. 2012. 24(4): p. 767-775. 20.Nakthong, P., T. Kondo, O. Chailapakul, and W.J.A.M. Siangproh, Development of an unmodified screen-printed graphene electrode for nonenzymatic histamine detection. 2020. 12(44): p. 5407-5414. 21.Carrasco, S.J.B., Metal-organic frameworks for the development of biosensors: a current overview. 2018. 8(4): p. 92. 22.Liu, L., Y. Zhou, S. Liu, and M. Xu, The Applications of Metal−Organic Frameworks in Electrochemical Sensors. ChemElectroChem, 2018. 5(1): p. 6-19. 23.Fujita, M., Y.J. Kwon, S. Washizu, and K.J.J.o.t.A.C.S. Ogura, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4'-bipyridine. 1994. 116(3): p. 1151-1152. 24.Dong, Y., C. Duan, Q. Sheng, and J.J.A. Zheng, Preparation of Ag@ zeolitic imidazolate framework-67 at room temperature for electrochemical sensing of hydrogen peroxide. 2019. 144(2): p. 521-529. 25.Dong, P., L. Zhu, J. Huang, J. Ren, J.J.B. Lei, and Bioelectronics, Electrocatalysis of cerium metal-organic frameworks for ratiometric electrochemical detection of telomerase activity. 2019. 138: p. 111313. 26.Ding, Q., L. Cao, M. Liu, H. Lin, and D.-P.J.R.A. Yang, Au nanoparticle-loaded eggshell for electrochemical detection of nitrite. 2021. 11(7): p. 4112-4117. 27.Wang, H., Y. Jian, Q. Kong, H. Liu, F. Lan, L. Liang, S. Ge, J.J.S. Yu, and A.B. Chemical, Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. 2018. 257: p. 561-569. 28.Qiu, L.-G., Z.-Q. Li, Y. Wu, W. Wang, T. Xu, and X.J.C.c. Jiang, Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. 2008(31): p. 3642-3644. 29.Shi, Q., Z. Chen, Z. Song, J. Li, and J.J.A.C. Dong, Synthesis of ZIF‐8 and ZIF‐67 by steam‐assisted conversion and an investigation of their tribological behaviors. 2011. 123(3): p. 698-701. 30.Krokidas, P., M. Castier, S. Moncho, D.N. Sredojevic, E.N. Brothers, H.T. Kwon, H.-K. Jeong, J.S. Lee, and I.G.J.T.J.o.P.C.C. Economou, ZIF-67 framework: a promising new candidate for propylene/propane separation. experimental data and molecular simulations. 2016. 120(15): p. 8116-8124. 31.Yang, S., Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P.M.J.A.m. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. 2013. 25(17): p. 2452-2456. 32.Budi, C.S., J.R. Deka, W.-C. Hsu, D. Saikia, K.-T. Chen, H.-M. Kao, and Y.-C. Yang, Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes. Journal of Hazardous Materials, 2021. 407: p. 124392. 33.Yang, J. and J.J.J.E.c. Xu, Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions. 2003. 5(4): p. 306-311. 34.Zhong, G., D. Liu, and J.J.J.o.M.C.A. Zhang, The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. 2018. 6(5): p. 1887-1899. 35.Liu, S., C. Lai, X. Liu, B. Li, C. Zhang, L. Qin, D. Huang, H. Yi, M. Zhang, and L.J.C.C.R. Li, Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. 2020. 424: p. 213520. 36.Yi, F.Y., D. Chen, M.K. Wu, L. Han, and H.L.J.C. Jiang, Chemical sensors based on metal–organic frameworks. 2016. 81(8): p. 675-690. 37.Liu, L., Y. Zhou, S. Liu, and M.J.C. Xu, The applications of metal− organic frameworks in electrochemical sensors. 2018. 5(1): p. 6-19. 38.Yang, L., C. Xu, W. Ye, and W. Liu, An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sensors and Actuators B: Chemical, 2015. 215: p. 489-496. 39.Liu, X., M. Hu, M. Wang, Y. Song, N. Zhou, L. He, and Z. Zhang, Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosensors and Bioelectronics, 2019. 123: p. 59-68. 40.Saraf, M., R. Rajak, and S.M.J.J.o.M.C.A. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. 2016. 4(42): p. 16432-16445. 41.Yu, Y., Z. Chen, L. Shi, F. Yang, J. Pan, B. Zhang, and D.J.A.c. Sun, Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification. 2014. 86(16): p. 8200-8205. 42.Zhang, Y., J. Xu, J. Xia, F. Zhang, Z.J.A.a.m. Wang, and interfaces, MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing. 2018. 10(45): p. 39151-39160. 43.Agrawal, A. and G.-C. Yi, Chapter Two - Sample pretreatment with graphene materials, in Comprehensive Analytical Chemistry, C.M. Hussain, Editor. 2020, Elsevier. p. 21-47. 44.Marcano, D.C., D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M.J.A.n. Tour, Improved synthesis of graphene oxide. 2010. 4(8): p. 4806-4814. 45.Das, S., P. Sudhagar, Y.S. Kang, W.J.C.N.f.A.E.S.A.i.M.S. Choi, and D. Applications, Synthesis and characterization of graphene. 2015: p. 85-131. 46.Staudenmaier, L.J.B.d.d.c.G., Verfahren zur darstellung der graphitsäure. 1898. 31(2): p. 1481-1487. 47.William, S.J.P.o.G.O.J.A.C.S., Hummers J, Offeman RE. 1958. 80: p. 1339. 48.Liu, Y., K. Yan, O.K. Okoth, J.J.B. Zhang, and Bioelectronics, A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. 2015. 74: p. 1016-1021. 49.Long, D., W. Li, L. Ling, J. Miyawaki, I. Mochida, and S.-H.J.L. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. 2010. 26(20): p. 16096-16102. 50.Meng, F., J. Li, S.K. Cushing, M. Zhi, and N.J.J.o.t.A.C.S. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. 2013. 135(28): p. 10286-10289. 51.Hummers Jr, W.S. and R.E.J.J.o.t.a.c.s. Offeman, Preparation of graphitic oxide. 1958. 80(6): p. 1339-1339. 52.Chen, F., L. Guo, X. Zhang, Z.Y. Leong, S. Yang, and H.Y.J.N. Yang, Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. 2017. 9(1): p. 326-333. 53.Zhang, H., S.J.J.o.A. Liu, and Compounds, Electrochemical sensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid. 2020. 842: p. 155873. 54.Lu, Z., Y. Li, T. Liu, G. Wang, M. Sun, Y. Jiang, H. He, Y. Wang, P. Zou, X. Wang, Q. Zhao, and H. Rao, A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chemical Engineering Journal, 2020. 389: p. 124417. 55.Chen, S., M. Shi, Q. Xu, J. Xu, X. Duan, Y. Gao, L. Lu, F. Gao, X. Wang, and Y.J.N. Yu, Ti3C2T x MXene/nitrogen-doped reduced graphene oxide composite: a high-performance electrochemical sensing platform for adrenaline detection. 2021. 32(26): p. 265501. 56.Lu, H., H. Cui, D. Duan, L. Li, and Y.J.A. Ding, A novel molecularly imprinted electrochemical sensor based on a nitrogen-doped graphene oxide quantum dot and molybdenum carbide nanocomposite for indometacin determination. 2021. 146(23): p. 7178-7186. 57.Zheng, H., P. Zheng, L. Zheng, Y. Jiang, Z. Wu, F. Wu, L. Shao, Y. Liu, and Y. Zhang, Nitrogen-Doped Graphene Quantum Dots Synthesized by C60/Nitrogen Plasma with Excitation-Independent Blue Photoluminescence Emission for Sensing of Ferric Ions. The Journal of Physical Chemistry C, 2018. 122(51): p. 29613-29619. 58.Naguib, M., M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W.J.A.m. Barsoum, Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. 2011. 23(37): p. 4248-4253. 59.Naguib, M., O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W.J.A.n. Barsoum, Two-dimensional transition metal carbides. 2012. 6(2): p. 1322-1331. 60.Naguib, M., J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W.J.J.o.t.A.C.S. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. 2013. 135(43): p. 15966-15969. 61.Meshkian, R., L.-Å. Näslund, J. Halim, J. Lu, M.W. Barsoum, and J.J.S.M. Rosen, Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. 2015. 108: p. 147-150. 62.Zhou, J., X. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, and Q.J.A.C.I.E. Huang, A two‐dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. 2016. 55(16): p. 5008-5013. 63.Zhou, J., X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, and P.J.A.n. Eklund, Synthesis and electrochemical properties of two-dimensional hafnium carbide. 2017. 11(4): p. 3841-3850. 64.Ling, Z., C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, and Y.J.P.o.t.N.A.o.S. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. 2014. 111(47): p. 16676-16681. 65.Zhao, M.Q., C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, and Y.J.A.m. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. 2015. 27(2): p. 339-345. 66.Luo, J., W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, and Y.J.A.n. Gan, Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. 2017. 11(3): p. 2459-2469. 67.Luo, J., C. Fang, C. Jin, H. Yuan, O. Sheng, R. Fang, W. Zhang, H. Huang, Y. Gan, and Y.J.J.o.M.C.A. Xia, Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. 2018. 6(17): p. 7794-7806. 68.Sun, W., S. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, and M.J.J.o.M.C.A. Green, Electrochemical etching of Ti 2 AlC to Ti 2 CT x (MXene) in low-concentration hydrochloric acid solution. 2017. 5(41): p. 21663-21668. 69.Pang, S.-Y., Y.-T. Wong, S. Yuan, Y. Liu, M.-K. Tsang, Z. Yang, H. Huang, W.-T. Wong, and J.J.J.o.t.A.C.S. Hao, Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. 2019. 141(24): p. 9610-9616. 70.Li, Y., H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, and P.J.N.M. Persson, Å.; Eklund, P.; Hultman, L.; Li, M. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. 2020. 19(8): p. 894-899. 71.Kamysbayev, V., A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, and D.V.J.S. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. 2020. 369(6506): p. 979-983. 72.Yang, Y., X. Jiang, J. Chao, C. Song, B. Liu, D. Zhu, Y. Sun, B. Yang, Q. Zhang, and Y.J.S.C.M. Chen, Synthesis of magnetic core-branched Au shell nanostructures and their application in cancer-related miRNA detection via SERS. 2017. 60(11): p. 1129-1144. 73.Mathiyazhakan, M., P.K. Upputuri, K. Sivasubramanian, A. Dhayani, P.K. Vemula, P. Zou, K. Pu, C. Yang, M. Pramanik, and C.J.S.C.M. Xu, In situ synthesis of gold nanostars within liposomes for controlled drug release and photoacoustic imaging. 2016. 59(11): p. 892-900. 74.Li, K., T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, and Q.J.S.C.M. Peng, Fabrication of tunable hierarchical MXene@ AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. 2018. 61(5): p. 728-736. 75.Sinha, A., Dhanjai, S.M. Mugo, J. Chen, and K.S. Lokesh, 14 - MXene-based sensors and biosensors: next-generation detection platforms, in Handbook of Nanomaterials in Analytical Chemistry, C. Mustansar Hussain, Editor. 2020, Elsevier. p. 361-372. 76.Sun, S., M. Wang, X. Chang, Y. Jiang, D. Zhang, D. Wang, Y. Zhang, Y.J.S. Lei, and A.B. Chemical, W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. 2020. 304: p. 127274. 77.Zhong, W., F. Gao, J. Zou, S. Liu, M. Li, Y. Gao, Y. Yu, X. Wang, and L.J.F.C. Lu, MXene@ Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples. 2021. 360: p. 130006. 78.Medetalibeyoglu, H., G. Kotan, N. Atar, and M.L. Yola, A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta, 2020. 220: p. 121403. 79.Murugan, N., R. Jerome, M. Preethika, A. Sundaramurthy, and A.K. Sundramoorthy, 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Journal of Materials Science & Technology, 2021. 72: p. 122-131. 80.Ward, E.M., C.E. DeSantis, C.C. Lin, J.L. Kramer, A. Jemal, B. Kohler, O.W. Brawley, and T.J.C.a.c.j.f.c. Gansler, Cancer statistics: breast cancer in situ. 2015. 65(6): p. 481-495. 81.Waks, A.G. and E.P.J.J. Winer, Breast cancer treatment: a review. 2019. 321(3): p. 288-300. 82.Mishra, A. and M.J.C. Verma, Cancer biomarkers: are we ready for the prime time? 2010. 2(1): p. 190-208. 83.Marques, R.C., S. Viswanathan, H.P. Nouws, C. Delerue-Matos, and M.B.J.T. González-García, Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. 2014. 129: p. 594-599. 84.Yola, M.L.J.M.A., Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. 2021. 188(3): p. 1-13. 85.Shamsipur, M., M. Emami, L. Farzin, R.J.B. Saber, and Bioelectronics, A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. 2018. 103: p. 54-61. 86.Hartati, Y.W., L.K. Letelay, S. Gaffar, S. Wyantuti, H.H.J.S. Bahti, and B.-S. Research, Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. 2020. 27: p. 100316. 87.Arkan, E., R. Saber, Z. Karimi, and M. Shamsipur, A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Analytica Chimica Acta, 2015. 874: p. 66-74. 88.Qian, J., F. Sun, and L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 2012. 82: p. 220-223.
|