跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭彥慈
研究生(外文):PENG, YAN-CIH
論文名稱:企業導入基於自然解決方案(NBS)之現況研究
論文名稱(外文):Current Status and Awareness of Taiwanese Companies on Implementing Natural-based Solutions (NBS)
指導教授:胡憲倫胡憲倫引用關係
指導教授(外文):HU, ALLEN H.
口試委員:黃正忠柳婉郁黃泓維胡憲倫
口試委員(外文):NIVEN HUANG, CHENG-CHUNGLIU, WAN-YULANCE HUANG, HONG-WEIHU, ALLEN H.
口試日期:2022-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:112
語文別:中文
論文頁數:106
中文關鍵詞:淨零排放基於自然解決方案二氧化碳移除自然碳匯恢復
外文關鍵詞:Net ZeroNature-based SolutionsCarbon Dioxide Removalrestoring natural carbon sinks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:750
  • 評分評分:
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:1
近年來氣候變遷在全球各地造成嚴重的影響,為了改善現狀,世界各國的企業紛紛提出了淨零排放的目標,而要達成淨零目標,除了迅速且大量減少自身排放的二氧化碳及其他溫室氣體外,更需加強從大氣中移除二氧化碳。目前國外企業已有利用基於自然解決方案(Nature-based Solutions)來達成大量移除二氧化碳的目的,其可以用於應對氣候變遷、人類健康、糧食和水資源安全、自然災害以及生物多樣性喪失。然而,國內對此作法仍感陌生,尚未有企業將其用於策略中,因此本研究探討國外企業執行基於自然解決方案之計畫及欲達成目標與詳情,針對臺灣自然資源現況,分析出適用於國內之方案;之後根據此方案設計問卷,詢問企業對基於自然解決方案之認知及執行意願,問卷發放對象為 2021 年天下雜誌評選為「天下永續 100 強」之企業,分析方法使用描述性統計、獨立樣本t檢定以及單因子獨立變異數分析進行分析與比較。
根據問卷結果,在驅動因素題組中企業認為保護或增加生物多樣性與棲息地;儲存大氣中的二氧化碳以減緩溫室氣體排放並增強對氣候變遷的適應力;投資基於自然解決方案可帶動公司效益以及提高城市韌性,為驅動企業將基於自然解決方案納入策略之主要原因。在障礙因素題組則以成本與效益不定的風險、法規監管複雜、利害關係人認知不足,為阻礙企業執行基於自然解決方案之主要原因。藉由上述因素與臺灣自然資源結合得知,國內適用的方案有濕地、農林業(農耕地)以及城市綠化,但其因執行上因涉及許多法規,以及我國自然類碳權的抵換專案尚未訂定完全,因此目前在國內執行基於自然解決方案仍有許多障礙,建議企業可以與國際環境保護組織進行合作,先在國外執行方案,待抵換專業建立完成後,結合在國外執行之經驗來擬訂本土方案。
Recently, climate change has caused a serious impact around the world. To improve the status quo, companies worldwide have proposed net-zero emission goals. To achieve the net-zero goal, in addition to rapidly and substantially reducing the carbon dioxide and other greenhouse gases emitted by them, more should strengthen the removal of carbon dioxide from the atmosphere. According to the above arguments, foreign companies currently use nature-based solutions to achieve the purpose of removing a large amount of carbon dioxide, which can be used to deal with climate change, human health, food and water security, natural disasters, and biodiversity loss. However, this practice is still unfamiliar in Taiwan and no companies have used it for carbon reduction strategies. Therefore, this study explores the goals and details of foreign companies' implementation of natural-based plans to achieve the goals and details. For the domestic plan, a questionnaire was designed based on this plan to ask companies about their perception and willingness to implement Nature-based Solutions (NBS). The target group for distributing questionnaire is those companies that were selected as “Top 100 Sustainable World” by the CommonWealth Magazine in 2021. The methods for analyzing returned questionnaires were descriptive statistics, Independent Sample t-test, and Analysis of Variance used for analysis and comparison.
According to the questionnaire results, companies in the drivers group considered biodiversity, carbon dioxide, investing in nature-based solutions drive company benefits, and improving urban resilience as the reasons for companies to incorporate nature-based solutions into their strategies; however, in the barriers group, cost and benefit uncertain risks, complex regulations, and poor stakeholder awareness are the reasons that prevent companies from implementing nature-based solutions. Combining the above factors with Taiwan’s natural resources, the domestically applicable schemes include wetlands, agroforestry (agricultural land), and urban greening, but their implementation will involve many regulations and my country’s natural carbon rights swap project has not yet been implemented and stipulated completely. So there are still many obstacles to the implementation of natural-based solutions in Taiwan. It is recommended that enterprises can cooperate with international environmental protection organizations or NGOs to implement the plan abroad first, then experience developing homegrown programs.

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究架構 5
第二章 文獻回顧 7
2.1 淨零排放 7
2.1.1 科學基礎減量目標倡議 (SBTi)之定義 7
2.1.2 淨零標準之框架 8
2.1.3 淨零標準之減輕策略 9
2.2 基於自然解決方案 (Nature-Based Solutions, NBS) 11
2.2.1 基於自然解決方案之起源與定義 12
2.2.2 基於自然解決方案之 IUCN全球標準 16
2.2.3 基於自然解決方案之效益 22
2.2.4 基於自然 解決方案之國外企業案例 26
2.3 自然碳匯與碳權交易機制 39
2.3.1 自然碳匯轉換為碳權之機制 39
2.3.2 自然碳權交易平臺 42
2.4 臺灣自然資源現況 44
2.4.1 森林資源 44
2.4.2 濕地環境 47
2.4.3 農林業 (農耕地 )現況 48
2.4.3 城市綠化現況 52
第三章 研究方法 54
3.1 研究執行流程 54
3.2 研究問卷與分析方法 55
3.2.1 問卷設計 55
3.2.2 問卷研究對象 60
3.2.3 統計分析 60
3.2.4 研究限制 62
第四章 結果與討論 63
4.1 問卷分析 63
4.1.1 問卷總體結果統計分析 63
4.1.2 不同職位填寫人結果統計分析 71
4.2 討論 73
4.2.1 本研究驅動因素結果與文獻比較 73
4.2.2 臺灣企業適用之方案 74
4.2.3 目前執行方案 之障礙 76
第五章 結論與建議 78
5.1 研究結論 78
5.2 研究建議 81
參考文獻 82
附錄 98
附錄一 本研究之問卷 99
1.Adame MF, NS Santini, C Tovilla, A Vázquez-Lule, L Castro, and M. Guevara, 2015. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences, 12:3805–3818.
2.Ahammad, R., Nandy, P., & Husnain, P. (2013). Unlocking ecosystem based adaptation opportunities in coastal Bangladesh. Journal of coastal conservation, 17(4), 833-840.
3.Alongi DM, D Murdiyarso, JW Fourqurean, JB Kauffman, A Hutahaean, S Crooks, CE Lovelock, J Howard, D Herr, M Fortes, E Pidgeon, T Wagey, 2016. Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetland Ecology Manage, 24:3–13.
4.Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for sustainable development, 35(3), 869-890.
5.Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., & Sanchez, A. (2019). Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. Journal of environmental management, 239, 244-254.
6.Amazon. (2020). Right now climate fund. Sustain. - US. (Accessed on 16 Feb 2022).
https://sustainability.aboutamazon.com/about/right-now-climate-fund
7.Apple. (2020). Apple commits to be 100 percent carbon neutral for its supply chain and products by 2030. Apple Newsroom. (Accessed on 16 Feb 2022).
https://www.apple.com/uk/newsroom/2020/07/apple-commits-to-be-100-percent-carbon-neutral-for-its-supply-chain-and-products-by-2030/
8.Arkema, K. K., Griffin, R., Maldonado, S., Silver, J., Suckale, J., & Guerry, A. D. (2017). Linking social, ecological, and physical science to advance natural and nature‐based protection for coastal communities. Annals of the New York Academy of Sciences, 1399(1), 5-26.
9.Assessment, M. E. (2005). Ecosystems and human well-being: wetlands and water. World resources institute.
10.Bauduceau, N., Berry, P., Cecchi, C., Elmqvist, T., Fernandez, M., Hartig, T., ... & Tack, J. (2015). Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities: Final report of the horizon 2020 expert group on'Nature-based solutions and re-naturing Cities'.
11.Bouma, T. J., Van Belzen, J., Balke, T., Zhu, Z., Airoldi, L., Blight, A. J., ... & Herman, P. M. (2014). Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take. Coastal Engineering, 87, 147-157.
12.Brown, R., & Farrelly, M. (2007). Barriers to advancing sustainable urban water management: A typology. Rainwater and Urban Design 2007, 229.
13.Busch, J., Engelmann, J., Cook-Patton, S. C., Griscom, B. W., Kroeger, T., Possingham, H., & Shyamsundar, P. (2019). Potential for low-cost carbon dioxide removal through tropical reforestation. Nature Climate Change, 9(6), 463-466.
14.B Valenzuela, R., Yeo-Chang, Y., Park, M. S., & Chun, J. N. (2020). Local people’s participation in mangrove restoration projects and impacts on social capital and livelihood: A case study in the Philippines. Forests, 11(5), 580.
15.Chiu SH, YH Huang, and HJ Lin, 2013. Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii. Estuarine, Coastal and Shelf Science, 125:27–35.
16.Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., ... & Walters, G. (2019). Core principles for successfully implementing and upscaling Nature-based Solutions. Environmental Science & Policy, 98, 20-29.
17.Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97, 2016-036.
18.Colloff, M. J., Wise, R. M., Palomo, I., Lavorel, S., & Pascual, U. (2020). Nature’s contribution to adaptation: insights from examples of the transformation of social-ecological systems. Ecosystems and People, 16(1), 137-150.
19.Convention on Biological Diversity. (2000). The Ecosystem Approach: COP 5 Decision V/6. Retired sections: Paragraphs 4–5, Fifth Meeting of the Conference of the Parties to the Convention on Biological Diversity. (Accessed on 16 Feb 2022).
https://www.cbd.int/decision/cop/?id=7148
20.Davies, C., & Lafortezza, R. (2019). Transitional path to the adoption of nature-based solutions. Land use policy, 80, 406-409.
21.Debele, S. E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S. B., Leo, L. S., ... & Di Sabatino, S. (2019). Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Environmental Research, 179, 108799.
22.Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z., ... & Shirayama, Y. (2018). Assessing nature's contributions to people. Science, 359(6373), 270-272.
23.Donato DC, JB Kauffman, D Murdiyarso, S Kurnianto, M Stidham and M Kanninen, 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4:293–297.
24.Downing JA, JJ Cole, JJ Middleburg, RG Striegl, CM Duarte, P Kortelainen, and KA Laube, 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 22:1–10
25.European Commission. (2013). Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions: Green Infrastructure (GI) – Enhancing Europe’s Natural. (Accessed on 16 Feb 2022).
http://csdle.lex.unict.it/Archive/LW/Data%20reports%20and%20studies/Reports%20and%20%20communication%20from%20EU%20Commission/20120828-022713_com-446_2012_enpdf.pdf
26.European Commission. (2020). Directorate-General for Research and Innovation, Biodiversity and nature-based solutions : analysis of EU-funded projects, Publications Office.
27.European Commission. (2015). Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities: Final report of the Horizon 2020 expert group on ’Nature-based solutions and re-naturing cities’: (full version). Publications Office of the European Union
28.Esteves, L. S., & Thomas, K. (2014). Managed realignment in practice in the UK: results from two independent surveys. Journal of coastal research, (70 (10070)), 407-413.
29.Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., & Vandewoestijne, S. (2017). Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environmental research, 159, 509-518.
30.Foster, J., Evans, L., Curtin, A., & Hill, B. (2012). The Role of Wetlands in the Carbon Cycle. Department of Sustainability, Environment, Water, Population and Communities in consultation with the Wetlands and Waterbirds Taskforce, Canberra, Australia.
31.Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P., & Seneviratne, S. I. (2019). Comment on “The global tree restoration potential”. Science, 366(6463), eaay8060.
32.Gold Standard. (2022). Process to be certified gold standard. (Accessed on 16 July 2022).
https://www.goldstandard.org/take-action/certify-project
33.Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., ... & Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645-11650.
34.Griscom, B.W., Busch, J., Cook-Patton, S.C., Ellis, P.W., Funk, J., Leavitt, S.M., et al. (2020). National mitigation potential from natural climate solutions in the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794). doi: 10.1098/rstb.2019.0126.
35.Heathrow airport. (2022). Heathrow 2.0: Connecting People And Planet. (Accessed on 16 Feb 2022).
https://www.heathrow.com/content/dam/heathrow/web/common/documents/company/heathrow-2-0-sustainability/futher-reading/Heathrow%202.0%20Connecting%20People%20and%20Planet%20FINAL.pdf
36.Höhne, N., Gidden, M. J., den Elzen, M., Hans, F., Fyson, C., Geiges, A., ... & Rogelj, J. (2021). Wave of net zero emission targets opens window to meeting the Paris Agreement. Nature Climate Change, 11(10), 820-822.
37.Howard, J., Sutton-Grier, A., Herr, D., Kleypas, J., Landis, E., Mcleod, E., ... & Simpson, S. (2017). Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology and the Environment, 15(1), 42-50.
38.HSBC Bank plc. (2021). HSBC partners with WRI and WWF to scale next generation solutions to climate change. (Accessed on 02 Feb 2022).
https://www.hsbc.com/news-and-media/media-releases/2021/hsbc-partners-with-wri-and-wwf-to-scale-next-generation-solutions-to-climate-change
39.Huang YH, CL Lee, CY Chung, SC Hsiao, and HJ Lin, 2015. Carbon budgets of multispecies seagrass beds at Dongsha Island in the South China Sea. Marine Environmental Research, 106:92–102.
40.Hung JJ, and F Kuo, 2002. Temporal variability of carbon and nutrient budgets from a tropical lagoon in Chiku, southwestern Taiwan. Estuarine, Coastal and Shelf Science, 54:887–900.
41.International Union for Conservation of Nature and Natural Resources. (2009). No time to lose–Make full use of nature‐based solutions in the post‐2012 climate change regime. In Position Paper on the Fifteenth Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 15) (pp. 1-5).
42.International Union for Conservation of Nature and Natural Resources. (2020). Guidance for using the IUCN Global Standard for Nature-based Solutions. (Accessed on 16 Feb 2022).
https://portals.iucn.org/library/sites/library/files/documents/2020-021-En.pdf
43.International Union for Conservation of Nature and Natural Resources. (2021). Nature-based solutions for climate change mitigation. (Accessed on 25 Feb 2022).
https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/37318/NBSCCM.pdf
44.Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Synthesis Report. (Accessed on 16 Feb 2022).
https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf
45.Intergovernmental Panel on Climate Change. (2019). Special Report: Climate Change and Land. (Accessed on 16 Feb 2022).
https://www.ipcc.ch/site/assets/uploads/sites/4/2021/07/210714-IPCCJ7230-SRCCL-Complete-BOOK-HRES.pdf
46.Intergovernmental Panel on Climate Change. (2018). Special Report: Global Warming of 1.5 ºC. (Accessed on 16 Feb 2022).
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf
47.Intergovernmental Panel on Climate Change. (2019a). Special Report: The Ocean and Cryosphere in a Changing Climate. (Accessed on 16 Feb 2022).
https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/02_SROCC_FM_FINAL.pdf
48.Intergovernmental Panel on Climate Change. (2019b). Special Report: Climate Change and Land. (Accessed on 21 Feb 2022).
https://www.ipcc.ch/site/assets/uploads/sites/4/2021/07/210714-IPCCJ7230-SRCCL-Complete-BOOK-HRES.pdf
49.Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services. (2019). Global Assessment Report on Biodiversity and Ecosystem Services. (Accessed on 16 Feb 2022). https://doi.org/10.5281/zenodo.3553579
50.Iseman, T., & Miralles-Wilhelm, F. (2021). Nature-based solutions in agriculture: The case and pathway for adoption. Food & Agriculture Org..
51.Janssen, S., Vreugdenhil, H., Hermans, L., & Slinger, J. (2020). On the nature based flood defence dilemma and its Resolution: A game theory based analysis. Science of the Total Environment, 705, 135359.
52.Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., ... & Bonn, A. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2).
53.Kering. (2021). Biodiversity strategy. (Accessed on 06 Feb 2022).
https://www.kering.com/en/sustainability/safeguarding-the-planet/biodiversity-strategy/
54.Lee LH, LY Hsieh, and HJ Lin, 2011. In situ production and respiration of the benthic community during emersion on subtropical intertidal sandflats. Marine Ecology Progress Series, 441:33–47.
55.Lee SC, CJ Fan, ZY Wu, and JY Juang, 2015. Investigating effect of environmental controls on dynamics of CO2 budget in a subtropical estuarial marsh wetland ecosystem. Environmental Research Letters, 10:025005.
56.Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M., & Poulter, B. (2019). Comment on “The global tree restoration potential”. Science, 366(6463), eaaz0388.
57.Li, C., Peng, C., Chiang, P. C., Cai, Y., Wang, X., & Yang, Z. (2019). Mechanisms and applications of green infrastructure practices for stormwater control: A review. Journal of Hydrology, 568, 626-637.
58.Li, S. B., Chen, P. H., Huang, J. S., Hsueh, M. L., Hsieh, L. Y., Lee, C. L., & Lin, H. J. (2018). Factors regulating carbon sinks in mangrove ecosystems. Global change biology, 24(9), 4195-4210.
59.Lin, T., Htun, K. T., Gritten, D., & Martin, A. R. (2019). The contribution of community forestry to climate change adaptive capacity in tropical dry forests: lessons from Myanmar. International Forestry Review, 21(3), 324-340.
60.Lorenzoni, I., Nicholson-Cole, S., & Whitmarsh, L. (2007). Barriers perceived to engaging with climate change among the UK public and their policy implications. Global environmental change, 17(3-4), 445-459.
61.MacKinnon, K., Sobrevila, C., & Hickey, V. (2008). Biodiversity, climate change, and adaptation: nature-based solutions from the World Bank portfolio (No. 46726, pp. 1-112). The World Bank.
62.Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., ... & Duarte, C. M. (2019). The future of Blue Carbon science, Nat. Commun., 10, 3998.
63.Maginnis, S., & Jackson, W. (2012). What is FLR and how does it differ from current approaches?. In The forest landscape restoration handbook (pp. 19-34). Routledge.
64.Marando, F., Salvatori, E., Sebastiani, A., Fusaro, L., & Manes, F. (2019). Regulating ecosystem services and green infrastructure: Assessment of urban heat island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 392, 92-102.
65.Martín, E. G., Giordano, R., Pagano, A., van der Keur, P., & Costa, M. M. (2020). Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Science of the Total Environment, 738, 139693.
66.Mastercard. Restoring 100 million trees by 2025 with the Priceless Planet Coalition. (Accessed on 16 Feb 2022).
https://www.mastercard.us/en-us/vision/corp-responsibility/priceless-planet.html
67.Microsoft. (2020). Environmental Sustainability Report 2020. (Accessed on 16 Feb 2022).
https://www.nespnorthern.edu.au/wp-content/uploads/2021/01/Microsoft_Environmental_Sustainability_Report_2020.pdf
68.Miralles-Wilhelm, F. (2021). Nature-based solutions in agriculture: Sustainable management and conservation of land, water and biodiversity.
69.Mitsch, W. J., & Jørgensen, S. E. (2003). Ecological engineering and ecosystem restoration. John Wiley & Sons.
70.Mitsch WJ, and JG Gosselink, 2007. Wetlands, 4th edn. Wiley, Hoboken.
71.Mitsch WJ, AM Nahlik, P Wolski, B Bernal, L Zhang, and L Ramberg, 2010. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecology Manage, 18:573–586.
72.Natural Capital Exchange. (2022). NCX for Buyers. (Accessed on 16 July 2022). https://ncx.com/carbon-buyers/
73.Nature Conservancy. (2019). Strategies for operationalizing nature-based solutions in the private sector.
74.NCC. (2014). State of natural capital: 2nd report. Natural Capital Committee, Department for Environment Food and Rural Affairs.
75.Netflix. (2020). Environmental Social Governance 2020.
https://s22.q4cdn.com/959853165/files/doc_downloads/2021/03/2020-SASB-Report_FINAL.pdf
76.Page S, JO Rieley and CJ Banks, 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17:798–818.
77.Panwar, R. (2021). Optimism Amid Despair: How to Avoid a Net-Zero Debacle. Business & Society, 00076503211053816.
78.Raymond, C. M., Breil, M., Nita, M. R., Kabisch, N., de Bel, M., Enzi, V., ... & Berry, P. (2017). An impact evaluation framework to support planning and evaluation of nature-based solutions projects. Report prepared by the EKLIPSE Expert Working Group on Nature-Based Solutions to Promote Climate Resilience in Urban Areas. Centre for Ecology and Hydrology.
79.Reed, J., van Vianen, J., Barlow, J., & Sunderland, T. (2017). Have integrated landscape approaches reconciled societal and environmental issues in the tropics?. Land Use Policy, 63, 481-492.
80.Renaud, F. G., Sudmeier-Rieux, K., & Estrella, M. (Eds.). (2013). The role of ecosystems in disaster risk reduction. United Nations University Press.
81.Rollason, E., Bracken, L. J., Hardy, R. J., & Large, A. R. G. (2018). Evaluating the success of public participation in integrated catchment management. Journal of Environmental Management, 228, 267-278.
82.Sarabi, S., Han, Q., Romme, A. G. L., de Vries, B., Valkenburg, R., & den Ouden, E. (2020). Uptake and implementation of nature-based solutions: an analysis of barriers using interpretive structural modeling. Journal of Environmental Management, 270, 110749.
83.Science Based Targets initiative. (2020.) Foundations for science-based net-zero target setting in the corporate sector.
https://sciencebasedtargets.org/resources/files/foundations-for-net-zero-full-paper.pdf
84.Science Based Targets initiative. (2021.) Beyond Value Chain Mitigation FAQ (Accessed on 16 Feb 2022).
https://sciencebasedtargets.org/resources/files/Beyond-Value-Chain-Mitigation-FAQ.pdf
85.Science Based Targets initiative. (2021.) SBTI CORPORATE NET-ZERO STANDARD. (Accessed on 16 Feb 2022).
https://sciencebasedtargets.org/resources/files/Net-Zero-Standard.pdf
86.Secretariat of the Convention on Biological Diversity. (2009). Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change. (Accessed on 16 Feb 2022).
https://www.cbd.int/doc/publications/cbd-ts-41-en.pdf
87.Seddon, N., Chausson, A., Berry, P., Girardin, C. A., Smith, A., & Turner, B. (2020). Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B, 375(1794), 20190120.
88.Seddon, N., Smith, A., Smith, P., Key, I., Chausson, A., Girardin, C., ... & Turner, B. (2021). Getting the message right on nature-based solutions to climate change. Global Change Biology, 27(8), 1518-1546.
89.Short, C., Clarke, L., Carnelli, F., Uttley, C., & Smith, B. (2019). Capturing the multiple benefits associated with nature‐based solutions: Lessons from a natural flood management project in the C otswolds, UK. Land degradation & development, 30(3), 241-252.
90.Siikamäki, J., Sanchirico, J. N., Jardine, S., McLaughlin, D., & Morris, D. (2013). Blue carbon: coastal ecosystems, their carbon storage, and potential for reducing emissions. Environment: Science and Policy for Sustainable Development, 55(6), 14-29.
91.Smith, A. C., Harrison, P. A., Soba, M. P., Archaux, F., Blicharska, M., Egoh, B. N., ... & De Echeverria, V. W. (2017). How natural capital delivers ecosystem services: A typology derived from a systematic review. Ecosystem Services, 26, 111-126.
92.Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., ... & Arneth, A. (2020). Which practices co‐deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?. Global Change Biology, 26(3), 1532-1575.
93.Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., van der Heijden, M. G., Liebman, M., & Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science advances, 6(45), eaba1715.
94.The Lowering Emissions by Accelerating Forest finance (LEAF). (Accessed on 16 Feb 2022). https://leafcoalition.org/
95.Thomas, R., Reed, M., Clifton, K., Appadurai, N., Mills, A., Zucca, C., ... & Quiroz, R. (2018). A framework for scaling sustainable land management options. Land Degradation & Development, 29(10), 3272-3284.
96.Thorne, C. (2017). Recognising barriers to implementation of Blue-Green Infrastructure: a Newcastle case study.
97.Torralba, M., Fagerholm, N., Burgess, P. J., Moreno, G., & Plieninger, T. (2016). Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, ecosystems & environment, 230, 150-161.
98.United Nations Framework Convention on Climate Change. (2016). Key decisions relevant for reducing emissions from deforestation and forest degradation in developing countries (REDD+). (Accessed on 16 Feb 2022).
https://unfccc.int/files/land_use_and_climate_change/redd/application/pdf/compilation_redd_decision_booklet_v1.2.pdf
99.Verified Carbon Standard. (2022.) Methodologies. (Accessed on 16 July 2022). https://verra.org/methodologies/
100.Waggoner, P. E., & Ovington, J. D. (1962). Proceedings of the Lockwood Conference on the Suburban Forest and Ecology, March 26, 27, 28, 1962, New Haven, Connecticut. In Lockwood Conference on the Suburban Forest and Ecology (1962: Connecticut Agricultural Experiment Station). Connecticut Agricultural Experiment Station.
101.Wamsler, C., Wickenberg, B., Hanson, H., Olsson, J. A., Stålhammar, S., Björn, H., ... & Zelmerlow, F. (2020). Environmental and climate policy integration: Targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. Journal of Cleaner Production, 247, 119154.
102.Warren, J., Lawson, C., & Belcher, K. (2008). The agri-environment. Cambridge University Press
103.World Economic Forum. (2020). The Global Risks Report 2020. (Accessed on 16 Feb 2022). https://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf
104.World Wide Fund for Nature. (2020a). Nature-based Solutions for Climate Change. (Accessed on 16 Feb 2022).
https://wwfint.awsassets.panda.org/downloads/wwf_nature_based_solutions_for_climate_change___july_2020_final.pdf
105.World Wide Fund for Nature. (2021). NDCs – A Force for Nature? 4th Edition. (Accessed on 16 Feb 2022).
https://wwfint.awsassets.panda.org/downloads/wwf_ndcs_for_nature_4th_edition.pdf
106.Zeng, Y., Sarira, T. V., Carrasco, L. R., Chong, K. Y., Friess, D. A., Lee, J. S. H., ... & Koh, L. P. (2020). Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nature Climate Change, 10(9), 842-844.
107.內政部營建署城鄉發展分署(2018)。「106-107 年度重要濕地碳匯調查計畫」案成果報告書。
108.行政院農業委員會林務局(2012)。第四次森林資源調查報告。
109.行政院農業委員會(2019)。農業部門溫室氣體排放管制行動方案成果報告。
110.行政院農業委員會(2022)。邁向農業淨零排放策略大會-農業淨零排放策略與措施。
111.行政院環境保護署(2019)。我國國家溫室氣體排放清冊報告(2021年版)。
112.行政院環境保護署(2015)。抵換專案介紹,檢自https://ghgregistry.epa.gov.tw/ghg_
rwd/Main/Offset/Offset_0_1(2022.07.14)
113.行政院院國家科學委員會(2014)。臺灣都會地區屋頂使用期望與屋頂綠化建置意願之研究。
114.吳明隆(2007)。SPSS 應用:問卷統計分析實務,台北市:五南,第465頁。
115.吳明隆(2013)。SPSS統計應用學習實務:問卷分析與應用統計,新北市:易席圖書,ISBN:978-986-5835-58-3。
116.童莉婷(2013)。高美濕地土壤碳存量之時空變化。國立中興大學生命科學系碩士論文。
117.陳柏宏(2014)。淡水河紅樹林及草澤植物的碳存量與碳收支。國立中興大學生命科學系碩士論文。
118.李世博(2015)。台南七股紅樹林碳收支模式。國立中興大學生命科學系碩士論文。
119.黃日聖(2016)。紅樹林疏伐對碳吸存之影響。國立中興大學生命科學系碩士論文。
120.行政院農委會林業試驗所 (2021)。善用福衛五號 聰明計算六都綠覆率。
檢自https://www.tfri.gov.tw/main/news_in.aspx?siteid=&ver=&usid=&mode=
&mnuid=5425&modid=529&nid=38253&noframe= (2022.04.02)
121.擁抱低碳世(2021)。負碳農業學者建議再生有機農法讓碳回歸土壤「地下碳庫」。
檢自http://ddpp.ntu.edu.tw/in-depth-coverage/1449-project-1100825-4.html
(2022.04.02)
122.有機農業推動中心(2020)。1999-2020年台灣有機種植及友善耕作面積成長趨勢圖
檢自https://www.oapc.org.tw/1999-2020%E5%B9%B4%E5%8F%B0%E7%81%
A3%E6%9C%89%E6%A9%9F%E7%A8%AE%E6%A4%8D%E5%8F%8A%E5%8F%8B%E5%96%84%E8%80%95%E4%BD%9C%E9%9D%A2%E7%A9%8D%E6%88%90%E9%95%B7%E8%B6%A8%E5%8B%A2%E5%9C%96/ (2022.04.02)
123.吳統雄(2018)。態度與行為研究的信度與效度:理論、應用、反省,檢自http://tx.liberal.ntu.edu.tw/~purplewoo/methodology/AnalyReliability_Validity.htm (2022.05.25)
124.環境資源中心(2022)。2040年農業淨零起跑 碳權、碳足跡怎麼算?擴及食物生產體系是挑戰,檢自https://e-info.org.tw/node/233339 (2022.04.02)
125.豐年雜誌(2022)。看懂森林碳匯與碳權認證 綠電太難買不如種樹生碳權,檢自https://www.agriharvest.tw/archives/79633?fbclid=IwAR2BrKWCwdULUjvN7u4ML-EA6jkJgzfP2eLme3KiTPYzCGXlfl3lrvhHWzk (2022.07.14)
126.產業永續發展整合資訊網(2017)。世界自然基金會推出新版全球目標黃金標準以衡量永續發展成果,檢自https://proj.ftis.org.tw/isdn/Message/MessageView?id=
51&mid=59 (2022.07.14)
127.綠學院(2021)。如何將森林碳匯轉為碳權?5步驟申請VCS認證,檢自https://greenimpact.cc/zh-TW/article/q2ll8/%E5%A6%82%E4%BD%95%E5% B0%
87%E6%A3%AE%E6%9E%97%E7%A2%B3%E5%8C%AF%E8%BD%89%E7%82%BA%E7%A2%B3%E6%AC%8A-5%E6%AD%A5%E9%A9%9F%E7%94%B3%
E8%AB%8Bvcs%E8%AA%8D%E8%AD%89(2022.07.14)
128.綠學院(2022)。取得森林碳權後,去哪裡買賣?檢自https://greenimpact.cc/zh-TW/article/k8gro/%E5%8F%96%E5%BE%97%E6%A3%AE%E6%9E%97%E7%A2%B3%E6%AC%8A%E5%BE%8C-%E5%8E%BB%E5%93%AA%E8%A3%A1%
E8%B2%B7%E8%B3%A3 (2022.07.14)
129.農業科技決策資訊平台(2022)。達成臺灣淨零排放路徑之自然為本解方,檢自https://agritech-foresight.atri.org.tw/article/contents/3869 (2022.07.14)
130.關鍵評論(2022)。取得「森林碳權」後,接下來可以在哪裡買賣交易?檢自https://www.thenewslens.com/article/163072 (2022.07.14)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top