跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/10 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王興政
研究生(外文):WANG, HSING-CHENG
論文名稱:六軸機械手臂之工具中心點的校正自動化
論文名稱(外文):Automatic Calibration of Tool Center Point for a six D.O.F robot
指導教授:林志哲林志哲引用關係
指導教授(外文):LIN, CHIH-JER
口試委員:林志哲陳金聖陳介力吳建達
口試委員(外文):LIN, CHIH-JERCHEN, CHIN-SHENGCHEN, CHIEH-LIWU, JIAN-DA
口試日期:2022-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:128
中文關鍵詞:機械手臂工具中心點校正雷射位移感測器
外文關鍵詞:Six-axis manipulatorTool Center PointCalibrationLaser displacement sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
在機械手臂工具中心點(Tool Center Point)校正上,傳統的校正方式是由操作人員移動機械手臂去對應到自行設定的參考點來抓取工具中心點的位置,此流程會重複六到十二次,如此冗長的作業流程及過於仰賴操作員的經驗和技術,使工具中心點校正無法融入自動化生產流程中。也因為如此,越來越多自動化校正方法被發明。在自動化校正領域中,多數須加裝感測器或是多次點位紀錄來求出中心點位置,並未達到彈性以及省時的效果。也因如此,本論文為了達成省時且彈性的優勢,選擇雷射位移器來實現自動校正工具中心點的方法。過程中,手臂會沿X及Y軸向進行一給定距離之位移並在過程中蒐集工具經過雷射時的資訊,計算工具偏移量;接著繼續進行第二個高度的X及Y的給定距離位移,透過兩高度之偏移軸向量進而求出工具偏擺;偏擺校正完成後,進行第三次的X及Y軸向之位移,求出工具在X、Y軸向的正確位置;最後將工具移至高於雷射光並向下移動去觸發雷射取得資訊,完成整個實驗流程並得到校正後工具中心點的位置。透過以上之校正實驗,本研究的校正結果能夠達到絕對定位精度0.07mm,絕對定向精度0.18°;重複定位精度為±0.083 mm以及重複定向精度±0.17°之結果。整個論文的研究會先將自動校正工具中心點的方法經模擬軟體測試,接著應用於實驗室之達明機器手臂進行實際測試,最後會與現有自動化校正產品做比較。
The traditional tool center point(TCP) calibration method requires the operator to use their experience to set the actual position of the tool center point. To address this lengthy workflow and low accuracy while improving accuracy and efficiency for time-saving and non-contact calibration, this thesis proposes an enhanced automatic TCP calibration method based on a laser displacement sensor and implemented on a cooperative robot with six degrees of freedom. During the calibration process, the robot arm will move a certain distance along the X and Y axes and collect the information when the tool passes through the laser during the process to calculate the runout of the tool, and then continue to move a certain distance along the X and Y axes for the second height calibration. After the runout angle is calculated and calibrated by triangulation, the runout calibration is completed and the third X and Y axis displacement is performed to find out the exact position of the tool on the X and Y axes. Finally, the tool is moved to a position higher than the laser, and the laser is triggered by moving downward to obtain information to complete the whole experimental process and get the calibrated tool center position. The whole calibration method is firstly verified in the virtual simulation environment and then implemented on the actual cooperative robot.
The results of the proposed TCP calibration method can achieve a positioning accuracy of about 0.07 mm, a positioning accuracy of about 0.18 degrees, a positioning repeatability of ±0.083 mm, and a positioning repeatability of less than ±0.17 degrees. This result meets the requirements of TCP calibration, but also achieves the purpose of simple, economical and time-saving, and it takes only 60 seconds to complete the whole calibration process.
摘要 i
ABSTRACT ii
Acknowledgments iv
Table of Contents v
List of Tables viii
List of Figures xiii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Problem Specification 3
1.3 Determination of Tool Center Point 4
1.3.1 Traditional Tool Center Point Calibration Method 4
1.4 Objective 6
1.5 Thesis Outline 7
Chapter 2 Literature Review 8
2.1 Overview 8
2.1.1 Traditional TCP Calibration 8
2.1.2 TCP Position Estimation Using Flat Plate 9
2.1.3 TCP Position Estimation Using Sphere Navigator 10
2.1.4 TCP Position Estimation Using Machine Vision 11
2.1.5 TCP Position Estimation Using Laser Tracker 17
2.2 Summary of Literature Review 18
Chapter 3 Methodology 19
3.1 Collaborative Robotic 19
3.2 Coordinate Systems 20
3.2.1 Tool Center Point 20
3.2.2 Robot Base Frame 21
3.2.3 Wrist Frame 22
3.2.4 Tool Frame 22
3.3 Experimental Concept 23
3.4 Tool Status Analysis and Error Model Set-Up 29
3.5 Runout Calibration 33
3.5.1 Position Method 33
3.5.2 Projection Angle Estimation 36
3.5.3 Rotation Matrix Estimation 38
3.6 Offset Calibration 43
3.6.1 Preliminary Offset Calibration 46
3.6.2 Final Offset Calibration 49
3.7 Calibration Process Flow Chart 51
Chapter 4 Experiments 53
4.1 Simulation Environment Set-Up 53
4.2 Laboratory Environment Set-Up 57
Chapter 5 Result and Analysis 60
5.1 Accuracy and Stabilization 60
5.2 Analysis of Simulation Results 64
5.2.1 Error-Free Stability Simulation with The Position Method 64
5.2.2 Four-Quadrant Simulation with The Position Method 71
5.2.3 Error-Free Stability Experiment 75
5.2.4 Four-Quadrant Experiment 81
5.3 Results of the First Comparison with LATC 86
5.3.1 LATC’s Four-Quadrant Experiment and Result 86
5.4 Results of the Second Comparison with LATC 89
Chapter 6 Conclusion and Future work 92
6.1 Conclusion 92
6.2 Future Work 93
References 94
Appendices 97


[1] DATA.ZERO, The Future of Zero-Defect Manufacturing, retrieved from:https://dat4zero.eu/what-is-industry-4-0/, 2022.04.06
[2] International Federation of Robotics (IFR), “World Robotics Report 2021 Press Conference Presentation”, p17, live stream.
[3] 黃成凱、麥朝創, "應用於顯示器自動化檢測之機械手臂虛擬工具中心點自動校正與位置教導系統," 機械工業雜誌, no. 464, pp. 41-48, 2021.
[4] Mc Graw-Hill Dictionary of Engineering Second Edition, retrieved from: https://www.academia.edu/8016572/Mc_Graw_Hill_Dictionary_of_Engineering_Second_Edition,2022.04.06
[5] Schwartz, T. (2015). A Generic Communication Library for Human-Robot Interaction on Construction Sites. In: Thomsen, M., Tamke, M., Gengnagel, C., Faircloth, B., Scheurer, F. (eds) Modelling Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-24208-8_29
[6] RoboDK – TCP calibration application, retrieved from: https://robodk.com/doc/en/Robot-Calibration-Creaform-Tool-calibration.html, 2022.02.12
[7] Han Feng-Lin, LI Peng, TAN Donghe, LI Dan, SHAO Dongshi, YAN Hongzhi,"基于平板标定工具的机器人工具中心点标定方法," JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, Vol 55, No.1, Feb.2020, doi: 10.3969/j.issn.0258-2724.20180807.
[8] B. Mooring, W.M. Driels, Z. Roth, “Fundamentals of Manipulator Calibration”, John Wiley& Sons, NY, 1991
[9] 黃成凱, 古有彬, 陳詣倫, 朱証裕, and 陳俊皓, "機械手臂工具中心自動校正方法," 機械工業雜誌, no. 420, pp. 76-84, 2018.
[10] Li Tse-Min, " Research on Automatic Calibration of TCP of a Six-Axis Manipulator, "2021.
[11] G. Bergström, "Method for calibrating of off-line generated robot program," 2011.
[12] Tao, Dan-Dan in Zhao, Di, "Research on automatic visual alignment method for robot armcentres," Machine Tools and Hydraulics, vol. 20, pp.55-59, 2019.
[13] Wang Cai-Dong, LI Zhi-hang, Wang Xin-jie, Wang Hui, " Calibration Method for Planar Tool Center Point of Robot Based on Binocular Vision," Machinery Design & Manufacture, no. 1, pp. 239-244, 2019.
[14] J. Hallenberg, "Robot tool center point calibration using computer vision," ed: Institutionen för systemteknik, 2007.
[15] E. Nieves-Rivera, Development of a position sensitive device and multi-position alignment control system for automated industrial robot calibration. Michigan State University, 2013.
[16] C. Borrmann and J. Wollnack, "Enhanced Calibration of Robot Tool Centre Point Using Analytical Algorithm," International Journal of Materials Science and Engineering, pp. 12-18, 2015, doi: 10.12720/ijmse.3.1.12-18.
[17] Techmen Robot Specification, retrieved from: https://www.tm-robot.com/en/mobile-series/, 2022.04.30
[18] M. Helal and B. Eng, "ROBOTIC TOOLING CALIBRATION BASED ON LINEAR AND NONLINEAR FORMULATIONS," 2015.
[19] Robot arm terminology, retrieved from: http://what-when-how.com/computer-graphics-and-geometric-modeling/transformations-and-the-graphics-pipelinebasic-computer-graphicspart-5/, 2022.04.30
[20] The definition of Euler angle, retrieved from : https://mathworld.wolfram.com/EulerAngles.html, 2022.04.30
[21] RoboDK, retrieved from: https://robodk.com/, 2021.11.09
[22] Laser Application Technology Corporation, LATC, retrieved from: http://www.i-latc.com/page/about/index.aspx?kind=266, 2021.10.31
[23] TM flow software application, retrieved from: https://www.tm-robot.com/zh-hant/tm-robot/, 2021.11.09
[24] International Standards Organization, ISO 9283, ”Manipulating industrial robots – Performance criteria and related test methods”, 1998.04.01, second edition
[25] The definition of rotation quaternions, retrieved from : https://danceswithcode.net/engineeringnotes/quaternions/quaternions.html, 2022.07.07

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top