[1]N. Padfield, J. Zabalza, H. Zhao, V. Masero, and J. Ren, "EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges," Sensors, vol. 19, no. 6, p. 1423, 2019.
[2]陳怡岑 and 陳永昇, "運動想像腦電波之連續式辨別," 碩士, 資訊工程學系碩士班, 國立交通大學, 新竹, 2004.[3]廖倍瑜 and 林灶生, "植基於 SSVEP 之腦機介面電話撥打系統," 2013.
[4]王俊偉, "使用最大對比光束集成濾波器之腦活動多類動作想像腦機介面系統," 2017.
[5]陳柏中. "腦機介面趨勢發展分析." https://portal.stpi.narl.org.tw/index/article/10227 (accessed.
[6]徐. S.-H. S. Hsu. "腦機介面 (Brain-Computer Interface) 專題 (上)." https://investigator.tw/1226/%E8%85%A6%E6%A9%9F%E4%BB%8B%E9%9D%A2-brain-computer-interface-%E5%B0%88%E9%A1%8C-%E4%B8%8A/ (accessed.
[7]盧士暐, "使用運動想像腦電波之適應性腦機介面," 碩士, 資訊科學與工程研究所, 國立交通大學, 新竹市, 2007. [Online]. Available: https://hdl.handle.net/11296/gb45bk[8]"脊髓小腦共濟失調 ─SCAs的遺傳及症狀." https://highscope.ch.ntu.edu.tw/wordpress/?p=24616 (accessed.
[9]"脊髓損傷 / Spinal Cord Injury." https://www.christopherreeve.org/zh/international/top-paralysis-topics-in-chinese/spinal-cord-injury (accessed.
[10]"布羅德曼分區系統." https://zh.wikipedia.org/zh-tw/%E5%B8%83%E7%BD%97%E5%BE%B7%E6%9B%BC%E5%88%86%E5%8C%BA%E7%B3%BB%E7%BB%9F (accessed.
[11]方振隆, "以腦波控制之主動式義手," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2004. [Online]. Available: https://hdl.handle.net/11296/e25367[12]"3D人體大透視/你懂大腦多少?." https://health.udn.com/health/story/6008/357634 (accessed.
[13]"大腦結構圖." https://blog.xuite.net/fong551/twblog/124597583 (accessed.
[14]"大腦區域功能圖." http://www.liteoncf.org.tw/dm/136/136.html (accessed.
[15]"大腦運動區域." http://fms.hsc.edu.tw/sysdata/doc/c/c81927d832c398ce/pdf.pdf (accessed.
[16]陳志瑋, "研究以小波神經網路作mu波即時鑑別," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2002. [Online]. Available: https://hdl.handle.net/11296/8n79e4[17]湯雅雯, "腦波量測系統之研製與腦波信號之非線性分析," 碩士, 電機工程學系碩博士班, 國立成功大學, 台南市, 2005. [Online]. Available: https://hdl.handle.net/11296/j52g37[18]"神經元." https://www.ehanlin.com.tw/keywordPool/wordPage.html?key=%E7%A5%9E%E7%B6%93%E5%85%83&subject=H-BI (accessed.
[19]"腦波." https://zh.m.wikipedia.org/zh-tw/%E8%85%A6%E6%B3%A2 (accessed.
[20]黃育瑜, "基於獨立EEG成分的運動執行、運動想像和運動觀察的源識別及比較乾/濕電極的獨立成分差異," 碩士, 認知與神經科學研究所, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/c5wwd2[21]林三永. "10-20系統和乾式電極." https://sa.ylib.com/MagArticle.aspx?id=1821 (accessed.
[22]"人機介面." https://en.wikipedia.org/wiki/Brain%E2%80%93computer_interface (accessed.
[23]徐. S.-H. S. Hsu. "腦機介面 (Brain-Computer Interface) 專題 (下)." https://investigator.tw/1237/%E8%85%A6%E6%A9%9F%E4%BB%8B%E9%9D%A2-brain-computer-interface-%E5%B0%88%E9%A1%8C-%E4%B8%8B/ (accessed.
[24]"Vision Quest." https://www.wired.com/2002/09/vision/ (accessed.
[25]G. Deuschl et al., "A Randomized Trial of Deep-Brain Stimulation for Parkinson's Disease," New England Journal of Medicine, vol. 355, no. 9, pp. 896-908, 2006/08/31 2006, doi: 10.1056/NEJMoa060281.
[26]M. Vidailhet et al., "Bilateral Deep-Brain Stimulation of the Globus Pallidus in Primary Generalized Dystonia," New England Journal of Medicine, vol. 352, no. 5, pp. 459-467, 2005/02/03 2005, doi: 10.1056/NEJMoa042187.
[27]P. Boon et al., "Deep Brain Stimulation in Patients with Refractory Temporal Lobe Epilepsy," Epilepsia, vol. 48, no. 8, pp. 1551-1560, 2007, doi: 10.1111/j.1528-1167.2007.01005.x.
[28]K. M. Szostak, L. Grand, and T. G. Constandinou, "Neural interfaces for intracortical recording: Requirements, fabrication methods, and characteristics," Frontiers in Neuroscience, vol. 11, p. 665, 2017.
[29]施明志, "應用於人腦電腦介面之主動式手部輔具," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2006. [Online]. Available: https://hdl.handle.net/11296/nx3cc5[30]黃繪禎, "EEG腦機介面控制肩肘機器人於中風病患復健研究," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2012. [Online]. Available: https://hdl.handle.net/11296/9q9pzr[31]"心理神經肌肉理論." http://www.tswong.net/hkpe/running/psychological_aspects/psychoneuromuscular_theory.htm (accessed.
[32]Z. Tang, S. Sun, S. Zhang, Y. Chen, C. Li, and S. Chen, "A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control," (in eng), Sensors (Basel), vol. 16, no. 12, p. 2050, 2016, doi: 10.3390/s16122050.
[33]M. Tariq, P. M. Trivailo, and M. Simic, "Detection of knee motor imagery by Mu ERD/ERS quantification for BCI based neurorehabilitation applications," in 2017 11th Asian Control Conference (ASCC), 17-20 Dec. 2017 2017, pp. 2215-2219, doi: 10.1109/ASCC.2017.8287519.
[34]Y. Jiang, N. T. Hau, and W. Y. Chung, "Semiasynchronous BCI Using Wearable Two-Channel EEG," IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 3, pp. 681-686, 2018, doi: 10.1109/TCDS.2017.2716973.
[35]C. Lindig-León, S. Rimbert, and L. Bougrain, "Multiclass Classification Based on Combined Motor Imageries," (in English), Frontiers in Neuroscience, Original Research vol. 14, 2020-November-19 2020, doi: 10.3389/fnins.2020.559858.
[36]N. A. Grigorev et al., "A BCI-Based Vibrotactile Neurofeedback Training Improves Motor Cortical Excitability During Motor Imagery," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1583-1592, 2021, doi: 10.1109/TNSRE.2021.3102304.
[37]G. Zeilig, H. Weingarden, M. Zwecker, I. Dudkiewicz, A. Bloch, and A. Esquenazi, "Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study," (in eng), J Spinal Cord Med, vol. 35, no. 2, pp. 96-101, Mar 2012, doi: 10.1179/2045772312y.0000000003.
[38]G. Colombo, M. Joerg, R. Schreier, and V. Dietz, "Treadmill training of paraplegic patients using a robotic orthosis," (in eng), J Rehabil Res Dev, vol. 37, no. 6, pp. 693-700, Nov-Dec 2000.
[39]M. Tariq, P. M. Trivailo, and M. Simic, "EEG-based BCI control schemes for lower-limb assistive-robots," Frontiers in human neuroscience, vol. 12, p. 312, 2018.
[40]"為中風病患開啟復健新路 成大工學院與成醫合作開發腦機介面復健機器人." https://news-secr.ncku.edu.tw/p/404-1037-68211.php (accessed.
[41]G. Yu, J. Wang, W. Chen, and J. Zhang, "EEG-based brain-controlled lower extremity exoskeleton rehabilitation robot," in 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2017: IEEE, pp. 763-767.
[42]X. Long, D.-X. Liu, S. Liang, Z. Yan, and X. Wu, "An eeg-based bci system for controlling lower exoskeleton to step over obstacles in realistic walking situation," in 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2018: IEEE, pp. 1609-1614.
[43]J. Choi and H. Kim, "Real-time Decoding of EEG Gait Intention for Controlling a Lower-limb Exoskeleton System," in 2019 7th International Winter Conference on Brain-Computer Interface (BCI), 18-20 Feb. 2019 2019, pp. 1-3, doi: 10.1109/IWW-BCI.2019.8737311.
[44]S. Y. Gordleeva et al., "Real-Time EEG–EMG Human–Machine Interface-Based Control System for a Lower-Limb Exoskeleton," IEEE Access, vol. 8, pp. 84070-84081, 2020, doi: 10.1109/ACCESS.2020.2991812.
[45]J. Choi, K. T. Kim, J. Lee, S. J. Lee, and H. Kim, "Robust Semi-synchronous BCI Controller for Brain-Actuated Exoskeleton System," in 2020 8th International Winter Conference on Brain-Computer Interface (BCI), 26-28 Feb. 2020 2020, pp. 1-3, doi: 10.1109/BCI48061.2020.9061658.
[46]黃浩權, "基於多通道濾波共同空間模式之憂鬱症腦波分析," 碩士, 機電整合研究所, 國立臺北科技大學, 台北市, 2017. [Online]. Available: https://hdl.handle.net/11296/9x26c7[47]"自迴歸模型." https://zh-yue.wikipedia.org/wiki/%E8%87%AA%E8%BF%B4%E6%AD%B8%E6%A8%A1%E5%9E%8B (accessed.
[48]"迴歸分析." https://zh.wikipedia.org/zh-tw/%E8%BF%B4%E6%AD%B8%E5%88%86%E6%9E%90 (accessed.
[49]"支持向量機." https://zh.wikipedia.org/zh-tw/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BAhttps://zh.wikipedia.org/zh-tw/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA (accessed.
[50]"線性判別分析." https://zh.wikipedia.org/zh-tw/%E7%B7%9A%E6%80%A7%E5%88%A4%E5%88%A5%E5%88%86%E6%9E%90 (accessed.