跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳逸勳
研究生(外文):CHEN, YI-HSUN
論文名稱:基於模糊邏輯與深度影像人工位能法之四旋機編隊避障策略
論文名稱(外文):The Formation Obstacle Avoidance Strategy of Quadrotors Based on Fuzzy Control with Depth Image Artificial Potential Field Method
指導教授:蔡舜宏蔡舜宏引用關係林郁修林郁修引用關係
指導教授(外文):TSAI, SHUN-HUNGLIN, YU-HSIU
口試委員:蔡舜宏林郁修林宏益江明理
口試委員(外文):TSAI, SHUN-HUNGLIN, YU-HSIULIN, HUNG-YICHIANG, MING-LI
口試日期:2022-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:四軸飛行器避障控制防撞深度影像人工位能法機器人作業系統模糊控制
外文關鍵詞:QuadrotorObstacle AvoidanceCollision AvoidanceDepth ImageArtificial Potential FieldROSFuzzy Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出一種基於模糊邏輯與深度影像的人工位能方法,以實現多架四軸飛行器在三維空間中的避障和防撞策略。利用深度影像判別障礙物分布,並透過演算法計算其中心位置以獲得避障方向。除此之外,為了使無人機速度不被避障速度向量影響飛行速度,透過模糊控制方法將避障方向與當前速度向量結合,使無人機得以在不改變速度前提下實現避障。為了解決在多四軸飛行器之編隊飛行中,每架四軸飛行器在進行避障時會有互相碰撞的風險,因此,本論文提出一種改良式的人工位能法,加強垂直移動方向的防碰撞排斥力以避免四軸飛行器彼此之間發生碰撞及減少視覺感測器被遮蔽的風險,此外所產生的避障排斥力也可達到避障的效果。經由區域網路連結多台搭載Pixhawk、飛行控制板和Raspberry Pi 4 Model B的四軸飛行器與電腦進行實際飛行以驗證所提之結果。經由實驗結果可驗證所開發之四軸飛行器及設計方法之可行性及有效性。
In this paper, we proposed an artificial potential field based on fuzzy logic with depth image to achieve the obstacle avoidance and collision avoidance for multiple quadcopters in 3D space. The depth image is used to determine the distribution of obstacles, and figure out the position of center by the algorithm to obtain the direction of obstacle avoidance. In addition, in order to keep the quadrotor speed, which may be affected during the execution of the algorithm, the proposed fuzzy-based control scheme that combined the direction of obstacle avoidance with the current speed vector to achieve the obstacles avoidance and maintain the speed of the quadcopters. In the formation flight of multiple quadcopters, there is a risk of collision when each quadcopter performs obstacle avoidance. In order to deal with this problem, an improved artificial potential field is proposed and the vertical anti-collision repulsive force is thus enhanced for avoiding the collisions between each of quadcopters and reducing the risk of obscuring visual sensors, and further the produced avoidance repulsion force can achieve the obstacle avoidance. The proposed results are demonstrated by the local area network which connected with the multiple quadcopters that installed the Pixhawk flight control board and Raspberry Pi 4 Model B and computer. The experimental results show the effectiveness and feasibility of the implemented quadrotors and the proposed design method.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章緒論 1
1.1 前言 1
1.2 研究方法與目的 2
1.3 論文貢獻與文獻探討 3
1.4 論文架構 5
第二章四軸飛行器飛行原理與動力模型推導 6
2.1 四軸飛行器的飛行原理 6
2.2 四軸飛行器動力模型系統 7
第三章基於深度影像之避障演算法 11
3.1 Intel RelaSense D400 系列深度相機 11
3.2 模糊控制系統 12
3.3 人工位能法 15
3.4 避障之排斥力 15
3.5 基於模糊邏輯之避障合力 18
第四章具有防碰撞功能之編隊飛行系統 23
4.1 虛擬結構法 24
4.2 機體間之排斥力 25
4.3 基於模糊邏輯之總合力 26
4.4 模糊邏輯結合深度影像之人工位能法控制流程 29
第五章實驗設備介紹與結果分析 32
5.1 四軸飛行器架構 32
5.2 PX4 Autopilot 38
5.3 機器人作業系統(Robot Operating System, ROS) 40
5.4 Gazebo 42
5.5 模擬結果 44
5.6 實驗環境與通訊架構 62
5.6.1 實驗環境 62
5.6.2 軟硬體設置 63
5.6.3 通訊架構 64
5.6.4 訊息交換架構 65
5.6.5 四軸飛行器的深度視野 67
5.7 實際飛行結果 69
第六章結論及未來展望 85
6.1 結論 85
6.2 未來展望 85
參考文獻 87
[1] Seeed. T‐Motor Air Gear 450. [Online]. Available: https://media.digikey.com/pdf/Data%20Sheets/Seeed%20Technology/108990080_Web.pdf
[2] Nooploop. LinkTrack Datasheet V2.1. [Online]. Available: http://ftp.nooploop.com/software/products/uwb/doc/LinkTrack_Datasheet_V2.1_en.pdf
[3] Benewake. Product Manaual of TFmini Plus. [Online]. Available: https://cdn.sparkfun.com/assets/1/4/2/1/9/TFmini_Plus_A02_Product_Manual_EN.pdf
[4] ASUS. RT-AC5300. [Online]. Available: https://www.asus.com/tw/networking-iotservers/wifi-routers/asus-wifi-routers/rt-ac5300/techspec/
[5] Intel. Intel® RealSenseTM Product Family D400 Series. [Online]. Available:https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf
[6] ——. Intel RealSense D435i. [Online]. Available: https://www.intelrealsense.com/depthcamera-d435i/
[7] PX4. PX4 Architectural Overview. [Online]. Available: https://docs.px4.io/master/en/concept/architecture.html
[8] H.-Y. Lin and X.-Z. Peng, “Autonomous quadrotor navigation with vision based obstaclea voidance and path planning,” IEEE Access, vol. 9, pp. 102 450–102 459, 2021.
[9] P. Li, X. Hao, J. Wang, Y. Gu, and G. Wang, “Uav obstacle detection algorithm based on improved orb sparse optical flow,” in 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 1, 2019, pp. 562–569.
[10] Y. Mao, M. Chen, X. Wei, and B. Chen, “Obstacle recognition and avoidance for uavs under resource-constrained environments,” IEEE Access, vol. 8, pp. 169 408–169 422, 2020.
[11] J. Hu, Y. Niu, and Z. Wang, “Obstacle avoidance methods for rotor uavs using realsense camera,” in 2017 Chinese Automation Congress (CAC). IEEE, 2017, pp. 7151–7155.
[12] X. Yang, J. Chen, Y. Dang, H. Luo, Y. Tang, C. Liao, P. Chen, and K.-T. Cheng, “Fast depth prediction and obstacle avoidance on a monocular drone using probabilistic convolutional neural network,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 156–167, 2019.
[13] X. Meng, Y. Xiang, and D. Fox, “Learning composable behavior embeddings for longhorizon visual navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3128–3135, 2021.
[14] Z. Pan, C. Zhang, Y. Xia, H. Xiong, and X. Shao, “An improved artificial potential field method for path planning and formation control of the multi-uav systems,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1129–1133, 2022.
[15] J. Sun, J. Tang, and S. Lao, “Collision avoidance for cooperative uavs with optimized artificial potential field algorithm,” IEEE Access, vol. 5, pp. 18 382–18 390, 2017.
[16] T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot teams,” IEEE transactions on robotics and automation, vol. 14, no. 6, pp. 926–939, 1998.
[17] G. Lee and D. Chwa, “Decentralized behavior-based formation control of multiple robots considering obstacle avoidance,” Intelligent Service Robotics, vol. 11, no. 1, pp. 127–138, 2018.
[18] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor, “A visionbased formation control framework,” IEEE transactions on robotics and automation, vol. 18, no. 5, pp. 813–825, 2002.
[19] Z. Peng, G. Wen, A. Rahmani, and Y. Yu, “Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach,” Robotics and autonomous systems, vol. 61, no. 9, pp. 988–996, 2013.
[20] M. A. Lewis and K.-H. Tan, “High precision formation control of mobile robots using virtual structures,” Autonomous robots, vol. 4, no. 4, pp. 387–403, 1997.
[21] K.-H. Tan and M. A. Lewis, “Virtual structures for high-precision cooperative mobile robotic control,” in Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and Systems. IROS’96, vol. 1. IEEE, 1996, pp. 132–139.
[22] Q. Chen, Y. Wang, and Y. Lu, “Formation control for uavs based on the virtual structure idea and nonlinear guidance logic,” in 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), 2021, pp. 135–139.
[23] X.-r. Li, B. Li, P. Zhang, J.-y. Zhang, and S. Zhang, “Large-scale unmanned aerial vehicle formation maintenance algorithm based on virtual structure,” in 2015 8th International Symposium on Computational Intelligence and Design (ISCID), vol. 1, 2015, pp. 417–421.
[24] J. Zhang, J. Yan, D. Yuan, and X. Hou, “The uav cooperative formation control design with collision avoidance based on improved artificial potential field,” in 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 6083–6088.
[25] T. S. Alderete, “Simulator aero model implementation,” NASA Ames Research Center, Moffett Field, California, p. 21, 1995.
[26] F. Sabatino, “Quadrotor control: modeling, nonlinearcontrol design, and simulation,” 2015.
[27] L. A. Zadeh, “Fuzzy sets,” in Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh. World Scientific, 1996, pp. 394–432.
[28] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International journal of man-machine studies, vol. 7, no. 1, pp. 1–13, 1975.
[29] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE transactions on systems, man, and cybernetics, no. 1, pp. 116–132, 1985.
[30] M. Sugeno and G. Kang, “Structure identification of fuzzy model,” Fuzzy sets and systems, vol. 28, no. 1, pp. 15–33, 1988.
[31] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.
[32] Nooploop. LinkTrack. [Online]. Available: https://www.nooploop.com/en/
[33] PX4. PX4 Autopilot User Guide (master). [Online]. Available: https://docs.px4.io/master/en/
[34] MAVLINK. MAVLink Developer Guide. [Online]. Available: https://mavlink.io/en/
[35] ROS. ROS. [Online]. Available: https://www.ros.org/
[36] ——. MAVROS. [Online]. Available: http://wiki.ros.org/mavros
[37] PX4. Simulation. [Online]. Available: https://docs.px4.io/master/en/simulation/
[38] ——. Hardware in the Loop Simulation (HITL). [Online]. Available: https://docs.px4.io/master/en/simulation/hitl.html
[39] X. Chen and R. W. Brockett, “Centralized and decentralized formation control with controllable interaction laws,” in 53rd IEEE Conference on Decision and Control, 2014, pp.601–606.
[40] X. Chen, H. Zhang, H. Lu, J. Xiao, Q. Qiu, and Y. Li, “Robust slam system based on monocular vision and lidar for robotic urban search and rescue,” in 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), 2017, pp. 41–47.
[41] V.-C. Miclea and S. Nedevschi, “Monocular depth estimation with improved long-range accuracy for uav environment perception,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
電子全文 電子全文(網際網路公開日期:20270814)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊