跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝沂叡
研究生(外文):HSIEH, I-JUI
論文名稱:寬能隙金屬氧化物緩衝層應用於環境友善之硒薄膜太陽能電池
論文名稱(外文):Wide Bandgap Metal Oxide Buffer Layers on the Eco-friendly Selenium Thin Film Solar Cells
指導教授:陳柏均陳柏均引用關係陳貴賢陳貴賢引用關係林麗瓊林麗瓊引用關係陳政營
指導教授(外文):CHEN, PO-CHUNCHEN, KUEI-HSIENCHEN, LI-CHYONGCHEN, CHENG-YING
口試委員:陳柏均陳貴賢林麗瓊陳政營
口試委員(外文):CHEN, PO-CHUNCHEN, KUEI-HSIENCHEN, LI-CHYONGCHEN, CHENG-YING
口試日期:2022-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:94
中文關鍵詞:照光退火晶粒大小硒薄膜太陽能電池氧化鋅錫緩衝層
外文關鍵詞:Light annealingGrain sizeSelenium-based solar cellZnSnOBuffer layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硒薄膜太陽能電池的轉換效率依然極低,但硒薄膜相較其他的薄膜太陽能電池相比依舊有相當多的優點: (1)相較於Si及其他多元化合物相比僅需較低溫(200℃)之製備(2)單一性的元件結構,硒薄膜太陽能電池是屬於單元素為吸收層,跟其他多元化合物太陽能電池(CIGS, CZTSSe)能使沉積方法相對降低複雜性。
在過去的十年中,硒薄膜太陽能電池除了具有上述優點外,還具有比其他吸收層更大的能隙(~1.8~2.0 eV)。這引起了科學界對硒作為串聯太陽能電池之吸收層的興趣,從而提高了光子到電流的轉換效率。
通常,非晶硒薄膜可以在高溫下退火形成結晶硒薄膜。然而,在退火過程中,Se薄膜很容易從基板上剝離或產生嚴重的裂紋。從緩衝層的角度來看,到目前為止,還沒有找到合適的緩衝層。此外,ZnMgO和Se之間的導帶偏移(CBO)為懸崖型(即CBO<0 eV)。這種效應會導致嚴重的問題,包括在接面處會複合電子電洞對、開路電壓 (Voc.) 損失和填充因子 (F.F) 損失。
在本文中,我們主要分為兩部分來改進上述問題。在論文的第一部分,我們將介紹不同強度的照光退火對結晶硒薄膜的影響,並選擇ZnMgO(ZMO)作為緩衝層。主要研究不同照光強度對硒薄膜晶粒尺寸的影響。此外,選擇Pt作為高功函數金屬以進一步改善電荷載子的收集並減少光載子的複合。總體而言,光電轉換效率接近4%。
在第二部分,我們將嘗試使用原子層沉積法 (ALD)製備ZnSnO作為緩衝層來代替 ZnMgO。使用ALD生長ZnSnO的好處可以概括為以下幾點:(1) ZnSnO是寬能隙材料 (~3.2eV);(2) Zn和Sn比值可控,可以精準地調節CBO使其成為spike型(即0 < CBO < 0.5 eV);(3) ALD可以有效地生長更大規模的薄膜並精確控制厚度。
最後結果表明,在優化ZnO和SnO比例的情況下,Zn1-xSnxO (x=7%)的光電轉換效率可以達到2.68%左右。本論文將氧化鋅錫緩衝層應用於硒薄膜太陽能電池應用並進一步研究。

Photon–to–current conversion efficiency of selenium-based thin-film solar cells still low. However, selenium based thin-film has exists many advantages compared to other thin-film solar cells, including: (1) Comparing with Si based and other poly-compound solar cells (i.e., CIGS, CZTSSe), the synthesis temperature of Se is relatively low (~ 200oC); (2) Se as single component absorber layer, the complexity of synthesis process is much simpler than the poly-compound solar cell.
In the past ten years, Se-based solar cells, besides the advantages mentioned above, it has a larger bandgap than other absorber layers (~1.8~2.0 eV). This has attracted scientific interest in selenium as an absorber layer for constructing tandem solar cells, thereby increasing the Photon–to–current conversion efficiency.
The amorphous film is annealed at high temperatures to form a crystalline selenium film. Generally, the amorphous Se thin film can anneal at high temperatures to form a crystalline selenium film. However, during the annealing process, the Se thin film would easily peel off from the substrate or produce the serious cracks. Moreover, in the buffer layer perspective, so far, has not found a suitable buffer layer for modulating conduction band offset (CBO) between ZnMgO and Se as cliff type (i.e., CBO<0 eV). This effect would cause serious problems, including recombining electron and hole pairs at the interface, open-circuit voltage (Voc.) loss, and the Fill factor (F.F) loss.
In this thesis, we mainly separate two parts for improve above mentioned issue. In the first part of the thesis, we will introduce different intensity of light annealing on crystalline Se thin film, and choose ZnMgO (ZMO) as the buffer layer. To mainly study on the effects of different light intensity with the Se grain size. Moreover, the Pt as high work function metal was selected for further improve the charge carrier collection and reduce the recombination of photocarrier. Overall, the photon–to–current conversion efficiency was achieved near 4%.
In the second part, we will try to use atomic layer deposition (ALD), depositing ZnSnO as buffer layer to replace ZnMgO. The benefit for using ALD growth ZnSnO can be summarized the as following points: (1) ZnSnO is wide band gap material (~3.2eV); (2) Controllable of Zn and Sn ratio, which can intentionally modulate the CBO become spile type (i.e., 0<CBO<0.5 eV); (3) ALD can effectively growth larger scale of thin-film and precisely control the thickness.
Finally, the result presented the Zn1-xSnxO (x=7%) under the optimization of ZnO and SnO ratio, the photon–to–current conversion efficiency can be achieved at about 2.68%. This thesis can apply for further study on Se based solar cell applications

摘 要 i
ABSTRACT iii
致 謝 v
目 錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池之演變 3
1.3 硒薄膜太陽能電池 4
1.4 硒太陽能電池之演變 5
1.5 硒太陽能發展之難處 8
1.6 硒太陽能電池之改善 9
1.7 研究動機與目的 10
第二章 文獻回顧 11
2.1 太陽能電池 11
2.1.1 工作原理 11
2.1.2 轉換效率 13
2.2 硒太陽能電池之各層介紹 16
2.2.1 背電極(陽極) 16
2.2.2 電洞傳輸層 17
2.2.3 硒之P型吸收層 17
2.2.4 氧化鋅鎂之N型緩衝層 19
2.2.5 氧化鋅錫之N型緩衝層 20
2.2.6 前電極(陰極) 21
2.2.7 含鈉玻璃 21
2.3 硒薄膜之品質改善 22
2.3.1 晶面對於硒薄膜之影響 22
2.3.2 照光熱處理對於硒薄膜之影響 23
2.3.3 摻雜對於硒薄膜之影響 25
2.4 導帶位置之差異(CBO) 26
2.5 原子沉積法之原理(ALD, Atomic layer deposition) 28
第三章 實驗方法與流程 30
3.1 實驗流程 30
3.1.1 基板製備 30
3.1.2 金屬氧化物緩衝層的製備 30
3.1.3 吸收層 32
3.1.4 電洞傳輸層製備 33
3.1.5 背電極製作 33
3.2 製程儀器介紹 34
3.2.1 濺鍍機(Sputter) 34
3.2.2 熱蒸鍍機(Thermal evaporator) 35
3.2.3 原子層沉積機(Atomic layer deposition) 36
3.2.4 高溫真空爐管(Atmosphere Pressure Furnace) 37
3.2.5 照光退火之系統(Light Illuminated Annealing) 38
3.3 分析儀器介紹 39
3.3.1 拉曼光譜儀(Raman Spectroscopy) 39
3.3.2 X光繞射分析儀(X-Ray Diffraction) 40
3.3.3 原子力顯微鏡(Atomic Force Microscope) 41
3.3.4 紫外-可見光譜儀(UV-Vis) 42
3.3.5 掃描式電子顯微鏡(Scanning Electron Microscope) 43
3.3.6 X射線光電子能譜(X-ray Photoelectron spectroscopy) 44
3.3.7 紫外光光電子能譜(Ultraviolet Photoelectron Spectroscopy) 45
3.3.8 電化學分析(Electrochemical analysis) 46
3.3.9 太陽光模擬器(Solar Simulator ) 47
3.3.10 外部量子效率(External Quantum Efficiency) 48
第四章 結果與討論 49
4.1 第一部分:不同強度照光退火硒薄膜之改善 49
4.1.1 硒薄膜在不同強度照光退火之顏色變化 49
4.1.2 不同強度照光退火硒薄膜對表面晶格振動的影響 50
4.1.3 不同強度照光退火硒薄膜對於晶面之影響 51
4.1.4 不同強度照光退火硒薄膜對於晶格大小之影響 52
4.1.5 不同強度照光退火硒薄膜對於表面粗糙度之影響 55
4.1.6 不同強度照光退火硒薄膜對於表面形貌之影響 56
4.1.7 不同強度照光退火對於能隙之影響 58
4.2 不同強度照光退火之硒薄膜太陽能電池 60
4.2.1 不同強度照光退火硒太陽能電池之轉換效率 60
4.2.2 以金作為背電極之問題及改善 62
4.2.3 以白金作為背電極對硒太陽能電池之效率改善 62
4.2.4 以白金背電極於不同照光退火硒太陽能電池之轉換效率 64
4.2.5 不同強度照光退火硒薄膜太陽能電池之外部量子效率 66
4.3 第二部分:不同比例氧化鋅錫之N型緩衝層 68
4.3.1 氧化鋅與氧化錫合適之溫度區間及厚度 68
4.3.2 氧化鋅錫緩衝層所含之錫比例 70
4.3.3 氧化鋅錫緩衝層理論及實際錫含量之比較 72
4.3.4 硒之吸收層及氧化鋅錫之緩衝層的各別能帶位置 73
4.3.5 硒之吸收層及氧化鋅錫之緩衝層的導帶差異 75
4.3.6 氧化鋅錫緩衝層對於空乏區之影響 77
4.4 不同比例氧化鋅錫緩衝層應用於硒太陽能電池 78
4.4.1 不同比例氧化硒錫於硒薄膜太陽能電池之轉換效率 78
4.4.2 不同比例氧化鋅錫緩衝層之外部量子效率 81
第五章 結論 83
第六章 未來方向 85
參考文獻 87


[1] B.P. Center, Annual energy outlook 2021, Energy Information Administration, 2021
[2] Share of energy sources in gross german power production in 2021. [Retrieved 12.21. 2021]; Available from: https://ag-energiebilanzen.de/28-0- Zusatzinformationen.html.
[3] Best research-cell efficiencies. [Retrieved 10.07. 2018]; Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[4] D. M. Chapin, C. S. Fuller, G. L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, 1954, 25, 676-677
[5] Smith, E Effect of light on selenium during the passage of an electric current, Nature, 1873, 7, 303.
[6] T. Nakada, A. Kunioka, Polycrystalline Thin-Film TiO2/Se Solar Cells, Japanese Journal of Applied Physics, 1985, 24, 536-538.
[7] A. W. Blakers, M. A. Green, 20% efficiency silicon solar cells, Applied Physics Letters, 1986, 48, 215.
[8] Y.-S. Tyan, E. A. Perez-Albuerne, Efficient thin-film CdS/CdTe solar cells, IEEE Photovoltaic Specialists Conference, 1982, 16, 794-800.
[9] J. G. Werthen, A. L. Fahrenbruch, R. H. Bube, J. C. Zesch, Surface preparation effects on efficient indium‐tin‐oxide‐CdTe and CdS‐CdTe heterojunction solar cells, Journal of Applied Physics, 1983, 54, 2750-2756.
[10] S. Menezes, 12% solar conversion efficiency by interphase restructuring, Applied Physics Letters, 1984, 45, 148-149
[11] B. J. Stanbery, Copper indium selenides and related materials for photovoltaic devices Critical Reviews in Solid State and Materials Sciences, 2002, 27, 73-117.
[12] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M.Powalla, New world record efficiency for Cu(In, Ga)Se2 thin‐film solar cells beyond 20%, Progress in Photovoltaics, 2011, 19, 894-897.
[13] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency, Advanced Energy Materials, 2014, 4, 1301465.
[14] T. Nakada and A. Kunioka, Efficient ITO/Se Heterojunction Solar Cells, Japanese Journal of Applied Physics, 1984, 23, 587-589.
[15] H. Ito, M. Oka, T. Ogino, A. Takeda, Y. Mizushima, Selenium Thin Film Solar Cell, Japanese Journal of Applied Physics, 1984, 21, 77-81.
[16] K. Tennakone, G. Kumara, I. Kottegoda, V. Perera, G. Aponsu, Nanoporous n-/selenium/p-CuCNS photovoltaic cell, Journal of Physics D: Applied Physics, 1998, 31, 2326.
[17] D. C. Nguyen, S. Tanaka, H. Nishino, K. Manabe, S. Ito, 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO2 electrode, Nanoscale Research Letters, 2013, 8, 8.
[18] K. Wang, Y. Shi, H. Zhang, Y. Xing, Q. Dong, T. Ma, Selenium as a photoabsorber for inorganic–organic hybrid solar cells, Physical Chemistry Chemical Physics, 2014, 16, 23316.
[19] M. Zhu, F. Hao, L. Ma, T.-B. Song, C. E. Miller, M. R. Wasielewski, X. Li, M. G. Kanatzidis, Solution-processed air-stable mesoscopic selenium solar cells, ACS Energy Letters, 2016, 1, 469-473.
[20] T. K. Todorov, S. Singh, D. M. Bishop, O. Gunawan, Y. S. Lee, T. S. Gershon, K. W. Brew, Ultrathin high band gap solar cells with improved efficiencies from the world ’ s oldest photovoltaic material, Nature Communications, 8: 682
[21] P. D. Antunez, R. Haight, Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material, Nature Communications, 2017, 8, 682.
[22] W. Liu, F. Yu, W. Fan, Q. Zhang, Improved stability and efficiency of polymer-based selenium solar cells through the usage of tin(IV) oxide in the electron transport layers and the analysis of aging dynamics, Physical Chemistry Chemical Physics, 2020, 22, 14838-14845.
[23] I. Hadar, T.B. Song, W.J. Ke, M. G. Kanatzidis, Modern Processing and Insights on Selenium Solar Cells: The World's First Photovoltaic Device, Advanced Energy Materials, 2019, 9, 1802766
[24] H.R. Jung, S.W. Shin, K. Gurav, Phase evolution of Cu2ZnSnS4 (CZTS) kesterite thin films during the sulfurization process, Ceramics International, 2015, 41, 13006-13011.
[25] J. Jean, P. R. Brown, R. L. Jaffeb, T. Buonassisi, V. Bulovića, Pathways for solar photovoltaics, Energy & Environmental Science, 2015, 8, 1200-1219.
[26] Solar equivalent circuit. [Retrieved 06.07. 2021]; Available from: http://www.23book.com/530000/523968.shtml
[27] V.V Brazhkin, S.V Popova, R.N Voloshin, Pressure–temperature phase diagram of molten elements: selenium, sulfur and iodine, Physica B: Condensed Matter, 1999, 265, 64-71
[28] M.H. Zhu, G.D. Niu, J. Tang, Elemental Se: fundamentals and its optoelectronic applications, Journal of Materials Chemistry C, 2019,7, 2199-2206.
[29] M. Noman, M.J. Abden, M.A Islam , "Germanium telluride absorber layer, a proposal for low illumination photovoltaic application using AMPS 1D," in 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), 2018: IEEE, pp. 1-5
[30] T. K. Todorov, S. Singh, D. M. Bishop, O. Gunawan, Y. S. Lee, T. S. Gershon, K. W. Brew, P. D. Antunez, R. Haight, Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material, Nature Communications, 2017, 8, 682.
[31] W. Chen, X.H. Pan, H.H. Zhang, Z.Z. Ye, P. Ding, S.S. Chen, J.Y. Huang, B. Lu, Small valence band offsets of non-polar ZnO/Zn1−xMgxO heterojunctions measured by X-ray photoelectron spectroscopy, Physics Letters A, 2014, 378, 2312–2316.
[32] S.Y Chen, A. Walsh, J.H. Yang, X. G. Gong, L. Sun, P.X. Yang, J.H. Chu, S.H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells, Physical review B, 2011, 83, 125201.
[33] I. Hadar, T.B. Song, W.J. Ke, M.G. Kanatzidis, Modern Processing and Insights on Selenium Solar Cells: The World’s First Photovoltaic Device, Advanced Energy Materials, 2019, 9, 1802766.
[34] I. Hadar, X.B. Hu, Z.Z. Luo, V. P. Dravid, M. G. Kanatzidis, Nonlinear Band Gap Tunability in Selenium–Tellurium Alloys and Its Utilization in Solar Cells, ACS Energy Letters, 2019, 4, 2137−2143.
[35] C. G. Van de Walle, J. Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and solutions, Nature, 2003, 423, 626-628.
[36] P. K. de Boer, R. A. de Groot, The conduction bands of MgO, MgS and HfO2, Journal of Physics: Condensed Matter, 1998, 10, 10241–10248.
[37] D. A. R. Barkhouse, R. Haight, N. Sakai, H.Hiroi, "Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3," Applied Physics Letters, vol. 100, no. 19, p. 193904, 2012.
[38] K. S. Gour, R. Parmar, R. Kumar, V.N. Singh "Cd-free Zn (O, S) as alternative buffer layer for chalcogenide and kesterite based thin films solar cells: A review," Journal of nanoscience and nanotechnology, vol. 20, no. 6, pp. 3622-3635, 2020.
[39] J. Li, X. Liu, W. Liu, B. Ge, "Restraining the Band Fluctuation of CBD‐Zn (O, S) Layer: Modifying the Hetero‐Junction Interface for High Performance Cu2ZnSnSe4 Solar Cells with Cd‐Free Buffer Layer" Solar Rrl, vol. 1, no. 10, p. 1700075, 2017.
[40] X. Li, X. Su, S. Venkataraj, S.K. Batabyal, "8.6% Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer," Solar Energy Materials and Solar Cells, vol. 157, pp. 101-107, 2016.
[41] X. Cui, K. Sun, J. Huang, C.Y. Lee, "Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer," Chemistry of Materials, vol. 30, no. 21, pp. 7860-7871, 2018.
[42] S. Mohammadnejad, Z.M. Bahnamiri, S.E. Maklavani, "Enhancement of the performance of kesterite thin-film solar cells using dual absorber and ZnMgO buffer layers," Superlattices and Microstructures, vol. 144, p. 106587, 2020.
[43] J. Varley, A. Schleife, A Janotti, C.G. Van de Walle, "Ambipolar doping in SnO,"Applied Physics Letters, vol. 103, no. 8, p. 082118, 2013.
[44] S. Huang, W. Lue, Z. Zou, "Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method," Journal of Physics D: Applied Physics, vol. 46,no. 23, p. 235108, 2013.
[45] C. G. Van de Walle, J. Neugebauer, "Universal alignment of hydrogen levels in semiconductors, insulators and solutions," Nature, vol. 423, no. 6940, pp. 626-628, 2003.
[46] S. Tan, W. Yang, K.J. Kanarik, T. Lill, "Highly selective directional atomic layer etching of silicon," ECS Journal of Solid State Science and Technology, vol. 4, no. 6, p. N5010, 2015.
[47] H. Profijt, S.E. Potts, M.C.M. van de Sando, W.M.M. Lessels, "Plasma-assisted atomic layer deposition: basics, opportunities, and challenges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.29, no. 5, p. 050801, 2011.
[48] H. C. Knoops, S.E Potts, A.A. Bol, W.M.M. Kessels "Atomic layer deposition," in Handbook of Crystal Growth: Elsevier,2015, pp. 1101-1134.
[49] W.J. Yin, Y. Wu, S.H. Wei, Engineering grain boundaries in Cu2ZnSnSe4 for better cell performance: a first‐principle study. Advanced Energy Materials, 4(1), 1300712, 2014.
[50] Y.T. Hsieh, Q. Han, C. Jiang, Efficiency enhancement of Cu2ZnSn(S,Se)4 solar cells via alkali metals doping. Advanced Energy Materials, 6(7), 1502386, 2016.
[51] Z.K. Yuan, S. Chen, Y. Xie, Na‐diffusion enhanced p‐type conductivity in Cu(In,Ga)Se2:A new mechanism for efficient doping in semiconductors. Advanced Energy Materials, 6(24), 1601191, 2016.
[52] Z. Tong, C. Yan, Z. Su, Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 105(22), 223903, 2014.
[53] W. Liu, A. A. Said, W. J. Fan, Q. Zhang, Inverted Solar Cells with Thermally Evaporated Selenium as an Active Layer. ACS Applied Energy Materials 2020, 3, 7345 – 7352
[54] R. Cldment, J.C Carballes, B. de Cremoux, Amorphous selenium thin films, Journal of Non.Crystalline Solids, 15 (1974) 505-516.
[55] Ido Hadar, Tze-Bin Song, Weijun Ke, and Mercouri G. Kanatzidis, Modern Processing and Insights on Selenium Solar Cells: The World’s First Photovoltaic Device, Adv. Energy Mater. 2019, 9, 1802766
[56] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, "Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation," Solar Energy Materials & Solar Cells, 67, 2001, 83-88.
[57] J. Varley, A. Schleife, A. Janotti, C.G. Van de Walle, "Ambipolar doping in SnO,"Applied Physics Letters, vol. 103, no. 8, p. 082118, 2013.
[58] S. Huang et al., "Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method," Journal of Physics D: Applied Physics, vol. 46, no. 23, p. 235108, 2013.
[59] C. G. Van de, J. Neugebauer, "Universal alignment of hydrogen levels in semiconductors, insulators and solutions," Nature, vol. 423, no. 6940, pp. 626-628, 2003.
[60] J. J. Scragg, J.K. Larsen, M. Kumar, C. Persson "Cu–Zn disorder and band gap fluctuations in Cu2ZnSn (S,Se)4 : Theoretical and experimental investigations," physica status solid (b), vol. 253, no. 2, pp. 247-254, 2016.
[61] R. Gautam, Vibrational microspectroscopic studies of biomedical conditions using model systems. 2014, Indian Institute of Science Bangalore76 560012, India
[62] X-Ray Diffraction [Retrieved 10.07. 2021]; Available from: https://www.veqter.co.uk/residual-stress-measurement/x-ray-diffraction
[63] Schematic of dynamic AFM mode (DFM) operation. [Retrieved 11.07. 2018]; Available from: https://www.nanoscience.com/technology/afm-technology/afm-modes-2/.
[64] Tauc plot. Available from: https://en.wikipedia.org/wiki/Tauc_plot
[65] Schematic of scanning electron microscope. [Retrieved 10.07. 2021]; Available from: https://www.nanoscience.com/technology/sem-technology/how-semworks/.
[66] J. C. Vickerman and I. S. Gilmore edithors, Surface Analysis – The Principal Techniques, 2nd Edition, Manchester Interdisciplinary Biocentre, University of Manchester, UK IAN S. GILMORE National Physical Laboratory, Teddington, UK.
[67] K. Gelderman, L. Lee, S.W. Donne, "Flat-band potential of a semiconductor: using the Mott–Schottky equation," Journal of chemical education, vol. 84, no. 4, p. 685, 2007
[68] Sun light spectrum. [Retrieved 10.07. 2021]; Available from: http://klimat.czn.uj.edu.pl/media/archive/11592.jpg.
[69] EQE spectrum. [Retrieved 10.07. 2021]; Available from: https://www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[70] T. K. Todorov, S. Singh, D. M. Bishop, O. Gunawan, Y. S. Lee, T. S. Gershon, K. W. Brew, P. D. Antunez, R. Haight, Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material, Nature Communications, 2017, 8, 682.
[71] A. Serra, M. Rossi, A. Buccolieri, D. Manno,” Solid-to-solid phase transformations of nanostructured selenium-tin thin films induced by thermal annealing in oxygen atmosphere,” AIP Conference Proceedings 1603, 31 (2014)
[72] I. Dash, D. Tonchev, G. Belev, H. Mani,” Electronic and thermal properties of magnesium-doped a-Se films,” Phys. Status Solidi C 6, No. S1 (2009)

電子全文 電子全文(網際網路公開日期:20270725)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top