|
[1]S. P. Asprey, B. W. Wojciechowski, and B. A. Peppley, “Kinetic studies using temperature-scanning: The steam-reforming of methanol,” Appl. Catal. A Gen., vol. 179, no. 1–2, pp. 51–70, 1999, doi: 10.1016/S0926-860X(98)00300-7. [2]A. Mastalir et al., “Steam reforming of methanol over Cu/ZrO2/CeO= catalysts: A kinetic study,” J. Catal., vol. 230, no. 2, pp. 464–475, 2005, doi: 10.1016/j.jcat.2004.12.020. [3]P. P. C. Udani, P. V. D. S. Gunawardana, H. C. Lee, and D. H. Kim, “Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts,” Int. J. Hydrogen Energy, vol. 34, no. 18, pp. 7648–7655, 2009, doi: 10.1016/j.ijhydene.2009.07.035. [4]J. P. Shen and C. Song, “Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells,” Catal. Today, vol. 77, no. 1–2, pp. 89–98, 2002, doi: 10.1016/S0920-5861(02)00235-3. [5]J. Agrell, H. Birgersson, and M. Boutonnet, “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation,” 2002, doi: 10.1016/S0378-7753(01)01027-8. [6]T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, and K. Takehira, “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol,” Appl. Catal. A Gen., vol. 263, no. 2, pp. 249–253, 2004, doi: 10.1016/j.apcata.2003.12.018. [7]A. Szizybalski, F. Girgsdies, A. Rabis, Y. Wang, M. Niederberger, and T. Ressler, “In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol,” J. Catal., vol. 233, no. 2, pp. 297–307, 2005, doi: 10.1016/j.jcat.2005.04.024. [8]G. Huang, B. J. Liaw, C. J. Jhang, and Y. Z. Chen, “Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts,” Appl. Catal. A Gen., vol. 358, no. 1, pp. 7–12, 2009, doi: 10.1016/j.apcata.2009.01.031. [9]R. J. Huang, S. Sakthinathan, T. W. Chiu, and C. Dong, “Hydrothermal synthesis of high surface area CuCrO2 for H2 production by methanol steam reforming,” RSC Adv., vol. 11, no. 21, pp. 12607–12613, 2021, doi: 10.1039/d1ra01332g. [10]T. W. Chiu, R. T. Hong, B. S. Yu, Y. H. Huang, S. Kameoka, and A. P. Tsai, “Improving steam-reforming performance by nanopowdering CuCrO2,” Int. J. Hydrogen Energy, vol. 39, no. 26, pp. 14222–14226, 2014, doi: 10.1016/j.ijhydene.2014.02.104. [11]B. Y. Hwang, S. Sakthinathan, and T. W. Chiu, “Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x = 0–1) nanopowders catalyst,” Int. J. Hydrogen Energy, vol. 44, no. 5, pp. 2848–2856, 2019, doi: 10.1016/j.ijhydene.2018.12.052. [12]C. L. Yu et al., “CuFeO2–CeO2 nanopowder catalyst prepared by self-combustion glycine nitrate process and applied for hydrogen production from methanol steam reforming,” Int. J. Hydrogen Energy, vol. 45, no. 32, pp. 15752–15762, 2020, doi: 10.1016/j.ijhydene.2020.04.077. [13]M. Yang, S. Li, and G. Chen, “High-temperature steam reforming of methanol over ZnO-Al2O3 catalysts,” Appl. Catal. B Environ., vol. 101, no. 3–4, pp. 409–416, 2011, doi: 10.1016/j.apcatb.2010.10.010. [14]N. Mao, “Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-019-48730-z. [15]Y. Wu et al., “Hydrogen production from methanol aqueous solution by ZnO/Zn(OH)2 macrostructure photocatalysts,” RSC Adv., vol. 8, no. 21, pp. 11395–11402, 2018, doi: 10.1039/c8ra00943k. [16]Y. Piña-Pérez et al., “Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent,” Appl. Catal. B Environ., vol. 230, no. February, pp. 125–134, 2018, doi: 10.1016/j.apcatb.2018.02.047. [17]A. Dhanalakshmi, B. Natarajan, V. Ramadas, A. Palanimurugan, and S. Thanikaikarasan, “Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles,” Pramana - J. Phys., vol. 87, no. 4, pp. 1–9, 2016, doi: 10.1007/s12043-016-1248-0. [18]G. P. Sahoo, S. Samanta, D. K. Bhui, S. Pyne, A. Maity, and A. Misra, “Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities,” J. Mol. Liq., vol. 212, pp. 665–670, 2015, doi: 10.1016/j.molliq.2015.10.019. [19]S. J. Rajoba, L. D. Jadhav, R. S. Kalubarme, and S. N. Yadav, “Influence of synthesis parameters on the physicochemical and electrochemical properties of LiFePO4 for Li-ion battery,” J. Alloys Compd., vol. 774, no. 2, pp. 841–847, 2019, doi: 10.1016/j.jallcom.2018.09.325. [20]Y. D. Kim et al., “Degradation studies of ceria-based solid oxide fuel cells at intermediate temperature under various load conditions,” J. Power Sources, vol. 452, no. February, p. 227758, 2020, doi: 10.1016/j.jpowsour.2020.227758. [21]H. Ji, J. Lee, E. Choi, and I. Seo, “Hydrogen production from steam reforming using an indirect heating method,” Int. J. Hydrogen Energy, vol. 43, no. 7, pp. 3655–3663, 2018, doi: 10.1016/j.ijhydene.2017.12.137. [22]Z. Sun et al., “Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion,” Appl. Catal. B Environ., vol. 269, no. February, p. 118758, 2020, doi: 10.1016/j.apcatb.2020.118758. [23]H. Li et al., “Sorption enhanced steam reforming of methanol for high-purity hydrogen production over Cu-MgO/Al2O3 bifunctional catalysts,” Appl. Catal. B Environ., vol. 276, no. February, p. 119052, 2020, doi: 10.1016/j.apcatb.2020.119052. [24]Y. Khani, F. Bahadoran, N. Safari, S. Soltanali, and S. A. Taheri, “Hydrogen production from steam reforming of methanol over Cu-based catalysts: The behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11824–11837, 2019, doi: 10.1016/j.ijhydene.2019.03.031. [25]L. Selva Roselin and H. W. Chiu, “Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO2 catalysts,” J. Saudi Chem. Soc., vol. 22, no. 6, pp. 692–704, 2018, doi: 10.1016/j.jscs.2017.12.001. [26]W. H. Chen and B. J. Lin, “Effect of microwave double absorption on hydrogen generation from methanol steam reforming,” Int. J. Hydrogen Energy, 2010, doi: 10.1016/j.ijhydene.2009.12.147. [27]M. Martinelli, R. Garcia, C. D. Watson, D. C. Cronauer, A. J. Kropf, and G. Jacobs, “Promoting the selectivity of Pt/m-ZrO2 ethanol steam reforming catalysts with k and rb dopants,” Nanomaterials, vol. 11, no. 9, pp. 1–24, 2021, doi: 10.3390/nano11092233. [28]M. Mosinska et al., “Hydrogen production on Cu-Ni catalysts via the oxy-steam reforming of methanol,” Catalysts, vol. 10, no. 3, 2020, doi: 10.3390/catal10030273. [29]S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., vol. 60, no. 2, pp. 309–319, 1938, doi: 10.1021/ja01269a023. [30]F. S. Li et al., “Site preference of Fe in nanoparticles of ZnFe2O4,” J. Magn. Magn. Mater., vol. 268, no. 3, pp. 332–339, 2004, doi: 10.1016/S0304-8853(03)00544-4. [31]L. Y. Dolgikh, I. L. Stolyarchuk, L. A. Staraya, I. V. Vasylenko, Y. I. Pyatnitsky, and P. E. Strizhak, “Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts,” Catal. petrochemistry, no. 29, pp. 1–10, 2020, doi: 10.15407/kataliz2020.29.001. [32]T. Liu, D. Xu, D. Wu, G. Liu, and X. Hong, “Spinel ZnFe2O4 Regulates Copper Sites for CO2 Hydrogenation to Methanol,” ACS Sustain. Chem. Eng., vol. 9, no. 11, pp. 4033–4041, 2021, doi: 10.1021/acssuschemeng.0c07682. [33]L. Wang et al., “The synergistic effect between ZnO and ZnCr2O4 on the catalytic performance for isobutanol synthesis from syngas,” Fuel, vol. 253, no. February, pp. 1570–1577, 2019, doi: 10.1016/j.fuel.2019.05.139. [34]J. Wen et al., “Mesoporous Ce-doped ZnO hollow microspheres for oxidation of 1,2-dichlorobenzene,” Catal. Sci. Technol., vol. 10, no. 11, pp. 3739–3747, 2020, doi: 10.1039/d0cy00272k. [35]M. Liang, W. Kang, and K. Xie, “Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique,” J. Nat. Gas Chem., vol. 18, no. 1, pp. 110–113, 2009, doi: 10.1016/S1003-9953(08)60073-0. [36]F. Papa, L. Patron, O. Carp, C. Paraschiv, and I. Balint, “Catalytic Behavoir of Neodymium Substituted Zinc Ferrites in Oxidative Co Upling O F Methane,” Rev. Roum. Chim., vol. 55, no. 1, pp. 33–38, 2010. [37]E. T. Acta, P. C. I. G. Murgulescu, R. Academy, S. Independentei, and B. Academy, “thermochimica acta,” vol. 291, pp. 171–177, 1997. [38]S. Bepari and D. Kuila, “Science Direct Steam reforming of methanol , ethanol and glycerol over nickel-based catalysts-A review,” Int. J. Hydrogen Energy, vol. 45, no. 36, pp. 18090–18113, 2019, doi: 10.1016/j.ijhydene.2019.08.003. [39]P. Tahay, Y. Khani, and M. Jabari, “ScienceDirect Synthesis of cubic and hexagonal ZnTiO3 as catalyst support in steam reforming of methanol : Study of physical and chemical properties of copper catalysts on the H2 and CO selectivity and coke formation,” Int. J. Hydrogen Energy, vol. 45, no. 16, pp. 9484–9495, 2020, doi: 10.1016/j.ijhydene.2020.01.149. [40]V. G. Deshmane, R. Y. Abrokwah, and D. Kuila, “ScienceDirect Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol,” Int. J. Hydrogen Energy, vol. 40, no. 33, pp. 10439–10452, 2015, doi: 10.1016/j.ijhydene.2015.06.084. [41]S. Liguori, A. Iulianelli, F. Dalena, V. Piemonte, Y. Huang, and A. Basile, “Science Direct Methanol steam reforming in an Al2O3 supported thin Pd-layer membrane reactor over Cu / ZnO / Al2O3 catalyst,” Int. J. Hydrogen Energy, vol. 39, no. 32, pp. 18702–18710, 2013, doi: 10.1016/j.ijhydene.2013.11.113. [42]K. Ghasemzadeh, E. Andalib, and A. Basile, “ScienceDirect Evaluation of dense Pd e Ag membrane reactor performance during methanol steam reforming in comparison with autothermal reforming using CFD analysis,” Int. J. Hydrogen Energy, vol. 41, no. 20, pp. 8745–8754, 2015, doi: 10.1016/j.ijhydene.2015.11.139. [43]Y. Khani, N. Safari, and N. Kamyar, “Science Direct High H2 selectivity with low coke formation for methanol steam reforming over,” Int. J. Hydrogen Energy, vol. 47, no. 2, pp. 971–983, 2021, doi: 10.1016/j.ijhydene.2021.10.089. [44]Y. Khani, F. Bahadoran, N. Safari, and S. Soltanali, “Science Direct Hydrogen production from steam reforming of methanol over Cu-based catalysts : The behavior of ZnxLaxAl1-x O4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11824–11837, 2019, doi: 10.1016/j.ijhydene.2019.03.031. [45]A. Baban, A. Yediler, N. K. Ciliz, and Z. Muenchen, “Integrated Water Management and CP Implementation for Wool and Textile Blend Processes,” vol. 38, no. 1, pp. 84–90, 2010, doi: 10.1002/clen.200900102. [46]J. Gu, C. Luo, W. Zhou, Z. Tong, and H. Zhang, “Ultrasonics - Sonochemistry Degradation of Rhodamine B in aqueous solution by laser cavitation,” Ultrason. - Sonochemistry, vol. 68, no. April, p. 105181, 2020, doi: 10.1016/j.ultsonch.2020.105181. [47]B. Cuiping et al., “Removal of rhodamine B by ozone-based advanced oxidation process,” DES, vol. 278, no. 1–3, pp. 84–90, 2011, doi: 10.1016/j.desal.2011.05.009. [48]S. Y. Lee, D. Kang, S. Jeong, H. T. Do, and J. H. Kim, “Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation,” 2020, doi: 10.1021/acsomega.9b04127. [49]S. Rasalingam, R. Peng, and R. T. Koodali, “Applied Catalysis B : Environmental An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials,” "Applied Catal. B, Environ., vol. 174–175, pp. 49–59, 2015, doi: 10.1016/j.apcatb.2015.02.040. [50]S. A. M. Issa, M. I. Sayyed, M. H. M. Zaid, and K. A. Matori, “Photon parameters for gamma-rays sensing properties of some oxide of lanthanides,” Results Phys., vol. 9, pp. 206–210, 2018, doi: 10.1016/j.rinp.2018.02.039. [51]H. A. Miran et al., “Thermo-mechanical properties of cubic lanthanide oxides,” Thin Solid Films, vol. 653, no. March 2017, pp. 37–48, 2018, doi: 10.1016/j.tsf.2018.01.063. [52]H. Jiang, P. Rinke, and M. Scheffler, “Electronic properties of lanthanide oxides from the GW perspective,” vol. 125115, pp. 1–13, 2012, doi: 10.1103/PhysRevB.86.125115. [53]“Introduction : Frontiers in Lanthanide Chemistry,” vol. 102, no. 6, 2002. [54]G. Wang, Q. Peng, and Y. Li, “Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications,” vol. 44, no. 5, 2011. [55]E. Y. Pikalova et al., “Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium,” Int. J. Hydrogen Energy, vol. 43, no. 36, pp. 17373–17386, 2018, doi: 10.1016/j.ijhydene.2018.07.115. [56]V. S. Kirankumar and S. Sumathi, “A review on photodegradation of organic pollutants using spinel oxide,” Mater. Today Chem., vol. 18, p. 100355, 2020, doi: 10.1016/j.mtchem.2020.100355. [57]C. Van Tran et al., “New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater,” J. Hazard. Mater., vol. 420, no. April, p. 126636, 2021, doi: 10.1016/j.jhazmat.2021.126636. [58]M. Sundararajan, L. J. Kennedy, P. Nithya, J. J. Vijaya, and M. Bououdina, “Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method,” J. Phys. Chem. Solids, vol. 108, no. April, pp. 61–75, 2017, doi: 10.1016/j.jpcs.2017.04.002. [59]M. A. Almessiere, A. D. Korkmaz, Y. Slimani, M. Nawaz, S. Ali, and A. Baykal, “Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites,” Ceram. Int., vol. 45, no. 3, pp. 3449–3458, 2019, doi: 10.1016/j.ceramint.2018.10.260. [60]T. Tangcharoen, J. T-thienprasert, and C. Kongmark, “Effect of calcination temperature on structural and optical properties of MAl2O4 (M=Ni, Cu, Zn) aluminate spinel nanoparticles,” vol. 8, no. 3, pp. 352–366, 2019. [61]Z. Y. Tian, H. Vieker, P. Mountapmbeme, and A. Beyer, “In situ characterization of Cu–Co oxides for catalytic application †,” pp. 249–262, 2015, doi: 10.1039/c4fd00192c. [62]T. W. Chiu, B. S. Yu, Y. R. Wang, K. TeChen, and Y. TeLin, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process,” J. Alloys Compd., vol. 509, no. 6, pp. 2933–2935, 2011, doi: 10.1016/j.jallcom.2010.11.162. [63]T. W. Chiu and P. S. Huang, “Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process,” Ceram. Int., vol. 39, no. SUPPL.1, pp. S575–S578, 2013, doi: 10.1016/j.ceramint.2012.10.138. [64]Y. Huang, S. Wang, A. Tsai, and S. Kameoka, “Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 ( X = Fe, Mn, Al, La),” Ceram. Int., vol. 40, no. 3, pp. 4541–4551, 2014, doi: 10.1016/j.ceramint.2013.08.130. [65]K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, “Applied Catalysis A : General for steam reforming of dimethyl ether,” vol. 341, pp. 139–145, 2008, doi: 10.1016/j.apcata.2008.02.039. [66]E. Kim, Z. T. Jiang, and K. No, “Measurement and calculation of optical band gap of chromium aluminum oxide films,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 2000, doi: 10.1143/jjap.39.4820. [67]S. Santra, A. Das, N. S. Das, and K. K. Chattopadhyay, “CuBO2 nanonetwork : a novel and significant candidate for photocatalytic dye degradation,” Bull. Mater. Sci., vol. 41, no. 5, pp. 1–5, 2018, doi: 10.1007/s12034-018-1642-y. [68]T. Larbi, M. A. Amara, B. Ouni, and M. Amlouk, “Enhanced photocatalytic degradation of methylene blue dye under UV-sunlight irradiation by cesium doped chromium oxide thin films,” Mater. Res. Bull., vol. 95, pp. 152–162, 2017, doi: 10.1016/j.materresbull.2017.07.024. [69]C. R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, and B. S. Benjamin, “Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles,” Ceram. Int., vol. 41, no. 8, pp. 9301–9313, 2015, doi: 10.1016/j.ceramint.2015.03.238. [70]J. M. Chem, “light irradiation †,” pp. 3634–3640, 2011, doi: 10.1039/c0jm03827j.
|