跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐秉楨
研究生(外文):HSU, BING-ZHEN
論文名稱:多孔性結構ZnO-ZnFe2O4粉末在甲醇水蒸氣重組下氫氣產量及還原之研究
論文名稱(外文):Porous Structure ZnO-ZnFe2O4 Catalyst Applied by Hydrogen from Steam Reforming Methanol
指導教授:邱德威
指導教授(外文):CHIU, TE-WEI
口試委員:張裕煦李懿軒雷健明
口試委員(外文):CHANG, YU-HSULEE, YI-HSUANLEI, CHIEN-MING
口試日期:2022-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:尖晶石甘胺酸燃燒法ZnFe2O4ZnO產氫蒸氣重組還原SAEDH2-TPR
外文關鍵詞:Spinel structureBurning explosion reactionZnFe2O4 and ZnO-ZnFe2O4Hydrogen generationMethanol Vapor ReconstructionSAEDH2-TPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在本實驗中,藉由甘胺酸燃燒法(Glycine Nitrate Process,GNP)的方式,以不同甘胺酸對硝酸根的比例(G/N),製備了具有尖晶石(Spinel)結構的ZnFe2O4和ZnO-ZnFe2O4粉末催化劑,¬利用於甲醇水蒸氣重組(SRM)。透過SEM、TEM可知,以GNP合成之ZnFe2O4和ZnO-ZnFe2O4粉末催化劑具有多孔結構且藉由SAED進行晶體鑑定。另外,從BET比表面積吸脫附分析發現,在G/N 1.5時,比表面積依序為5.66 m2/g (ZnFe2O4)、8.20 m2/g (ZnO-ZnFe2O4);G/N 1.7時,依序為6.03 m2/g (ZnFe2O4)、11.67 m2/g (ZnO-ZnFe2O4),可得Spinel結構受到G/N的影響並不大,並屬於Type IV 型中的H3型遲滯迴線等溫線。此外,SRM實驗中,發現ZnFe2O4在450°C以及ZnO-ZnFe2O4在500°C下,有最佳的催化效果;尤其,500°C下的ZnO-ZnFe2O4最高H2生成速率為6663 ml STP min-1 g-cat-1。並透過H2-TPR分析其在不同溫度範圍的氫氣還原情況。另一方面,ZnO-ZnFe2O4 (GN=1.7)有良好的H2選擇性和穩定性。因此,希望藉由研究ZnFe2O4(純相Spinel)和ZnO-ZnFe2O4(複合粉末),來了解Spinel的高催化活性及ZnO良好的分散性以利提高催化劑的比表面積,對於未來蒸汽重組運用在民生工業上有更進一步的發展。
In this experiment, ZnFe2O4 (spinel structure) was prepared by the glycine nitrate method (GNP) with different glycine to nitrate ratios (G/N). And ZnO-ZnFe2O4 powder catalyst for steam reforming methanol (SRM). It could be seen by SEM and TEM that the GNP-synthesized ZnFe2O4 and ZnO-ZnFe2O4 powder catalysts had a porous structure, and the crystals were identified by SAED. In addition, from the adsorption and desorption analysis of BET specific surface area, it was found that when G/N was 1.5, the specific surface area was 5.66 m2/g (ZnFe2O4) and 8.20 m2/g (ZnO-ZnFe2O4) in sequence. When G/N was 1.7, in sequence are 6.03 m2/g (ZnFe2O4) and 11.67 m2/g (ZnO-ZnFe2O4), the Spinel structure was not greatly affected by G/N, and belonged to the H3-type hysteresis loop isotherm in Type IV. On the other hand, it was found that ZnFe2O4 had the best catalytic effect at 450°C and ZnO-ZnFe2O4 at 500°C in the SRM experiment. Especially, the highest H2 generation rate of ZnO-ZnFe2O4 at 500°C was about 6600 ml STP min-1 g-cat-1. Then, the hydrogen reduction in different temperature ranges was analyzed by H2-TPR. On the other hand, ZnO-ZnFe2O4 had good H2 selectivity and stability. Therefore, it was hoped that studying ZnFe2O4 (pure phase) and ZnO-ZnFe2O4 (composite powder). We could understand the high catalytic activity of Spinel and the good dispersibility of ZnO to improve the specific surface area of the catalyst. It had been further development in the human livelihood industry.
摘 要 i
ABSTRACT ii
致 謝 iv
圖目錄 viii
表目錄 xi
Chapter 1 前言 1
Chapter 2 文獻回顧 3
2.1 尖晶石結構 Spinel structure 3
2.2 氧化鋅 Zinc oxide 5
2.3 甘胺酸燃燒製備氧化物方法Glycine-Nitrate Process 6
2.4 甲醇水蒸氣重建 Methanol steam reforming 8
Chapter 3 實驗部分 10
3.1 實驗藥品及其來源 10
3.2 實驗氣體及其來源 11
3.3 ZnFe2O4和ZnO-ZnFe2O4複合催化劑的製備 12
3.4 甲醇水蒸氣重組系統 15
3.4.1 ZnFe2O4和ZnO-ZnFe2O4粉末在N2氣氛中的熱處理 15
3.4.2 甲醇水蒸氣重建產氫反應模式 17
3.5 性質分析 18
3.5.1 X射線繞射分析儀 18
3.5.2 掃描式電子顯微鏡 20
3.5.3 穿透式電子顯微鏡 22
3.5.4 比表面積測定 24
3.5.5 程序升溫還原 27
3.5.6 氣相層析儀 28
Chapter 4 結果與討論 31
4.1 ZnFe2O4和ZnO-ZnFe2O4粉末之XRD分析 31
4.2 ZnFe2O4和ZnO-ZnFe2O4粉末之SEM分析 33
4.3 ZnFe2O4和ZnO-ZnFe2O4粉末之TEM分析 35
4.4 ZnFe2O4和ZnO-ZnFe2O4粉末之STEM/EDS分析 37
4.5 ZnFe2O4和ZnO-ZnFe2O4粉末之BET分析 41
4.6 H2-TPR分析 44
4.7 ZnFe2O4和ZnO-ZnFe2O4粉末在催化還原(SRM)後性質分析 46
4.7.1 ZnFe2O4和ZnO-ZnFe2O4粉末在SRM後XRD分析 46
4.7.2 ZnFe2O4和ZnO-ZnFe2O4粉末在SRM後SEM分析 48
4.7.3 ZnFe2O4和ZnO-ZnFe2O4粉末之氣相層析分析 50
4.8 結論 56
Chapter 5 製備多孔性結構CuGd2O4粉末應用在紫外光光降解RhB 57
5.1 前言 57
5.2 實驗部分 59
5.2.1 實驗藥品來源 59
5.2.2 實驗光來源 59
5.2.3 前驅物製備及實驗流程 60
5.2.4 CuGd2O4光催化劑紫外光降解羅丹明B 62
5.2.5 特徵分析 63
5.2.5.1 傅立葉轉換紅外光譜儀 (FT-IR) 63
5.2.5.2 紫外-可見分子吸收光譜 66
5.3 結果與討論 69
5.3.1 CuGd2O4粉末之XRD分析 69
5.3.2 CuGd2O4粉末之FT-IR分析 71
5.3.3 CuGd2O4粉末之SEM分析 73
5.3.4 CuGd2O4粉末之TEM分析 75
5.3.5 CuGd2O4粉末之STEM-EDX分析 77
5.3.6 以燃燒法製備之粉末與其在氮氣環境退火後之BET分析 79
5.3.7 以燃燒法製備之粉末與其在氮氣環境退火後光學特性分析 錯誤! 尚未定義書籤。
5.3.8 CuGd2O4催化劑光降解RhB之特性分析 83
5.4 結論 88
總結 89
Reference 90
Paper Publication and Conference Presentations 100


圖目錄
圖 2.1 尖晶石晶體結構: Fm m對稱性空間群 4
圖 2.2 氧化鋅之六方晶和立方晶之晶體結構 5
圖 2.3 甘胺酸之化學結構圖 6
圖 3.1 透過甘胺酸燃燒法製備前驅液粉末及分析模式示意圖 13
圖 3.2 甘胺酸燃燒法的反應流程 14
圖 3.3 管狀爐中催化劑放置示意圖 16
圖 3.4 甲醇水蒸氣重建反應裝置示意圖 17
圖 3.5 Bruker D2 Phaser X-ray diffraction meter 19
圖 3.6 SEM Hitachi Regulus 8100 20
圖 3.7 鍍金機 21
圖 3.8 穿透式電子顯微鏡Field emission transmission electron microscope, JEOL JEM-2100F (FE-TEM) 23
圖 3.9 Brunauer-Emmett-Teller analyzer 26
圖 3.10 The Schematic of temperature programmed reduction (TPR) 27
圖 3.11 GC 1000 氣相層析儀 29
圖 3.12 GC分析後的峰值 29
圖 3.13 檢量線曲線 30
圖 4.1 (a) ZnO-ZnFe2O4 G/N 1.5, (b) ZnO-ZnFe2O4 G/N 1.7, (c) ZnFe2O4 G/N 1.5, (d) ZnFe2O4 G/N 1.7 粉末的XRD圖譜。 32
圖 4.2 (a), (b) ZnFe2O4 (G/N 1.5) (c), (d) ZnFe2O4 (G/N 1.7) (e), (f) ZnO-ZnFe2O4 (G/N 1.5) (g), (h) ZnO-ZnFe2O4 (G/N 1.7) 為SEM分析圖。 34
圖 4.3 ZnFe2O4粉末之(a)TEM圖及(b) HRTEM圖 36
圖 4.4 ZnFe2O4粉末之(a)選區繞射圖和(b)模擬繞射圖 36
圖 4.5 透過GNP法製備的ZnFe2O4粉末的STEM-EDS圖像和元素分布圖 (a) STEM 圖像 (b) Zn (c) Fe (d) O (e) Zn、Fe和O重疊的元素分布圖。 38
圖 4.6 GNP法製備ZnO-ZnFe2O4粉末的STEM-EDS圖像和元素分佈圖 (a) STEM 圖像 (b) Zn (c) O (d) Fe (e) Zn、Fe和O重疊的元素分佈圖。 39
圖 4.7 在500°C下還原處理後ZnO-ZnFe2O4的STEM元素分布圖像 (a) STEM圖像 (b) Zn (c) Fe (d) O (e) Zn、Fe和O的元素分布圖。 40
圖 4.8 (a)-(d) N2吸附/脫附曲線和 (e) GNP製備的ZnFe2O4和ZnO-ZnFe2O4粉末的孔徑分佈。 43
圖 4.9 H2-TPR分析圖 (a) ZnFe2O4 GN=1.5, (b) ZnFe2O4 GN=1.7, (c) ZnO- ZnFe2O4 GN=1.5, (d) ZnO- ZnFe2O4 GN=1.7。 45
圖 4.10 蒸汽重建後GNP法製備ZnFe2O4和ZnO-ZnFe2O4粉末的XRD圖譜。 47
圖 4.11 在SRM反應後 (a), (b) ZnFe2O4 (G/N 1.5) (c), (d) ZnFe2O4 (G/N 1.7) (e), (f) ZnO-ZnFe2O4 (G/N 1.5) (g), (h) ZnO-ZnFe2O4 (G/N 1.7) 粉末之SEM圖 49
圖 4.12 ZnFe2O4 and ZnO-ZnFe2O4催化劑在350-500°C下之氫氣產量圖。 52
圖 4.13 ZnO-ZnFe2O4 (GN=1.7)催化劑在500℃下時效處理表現。 53
圖 4.13 (a) H2, (b) CH4, (c) CO 和 (d) ZnO-ZnFe2O4 (GN=1.7)催化劑在350-500℃下的CO2選擇性/轉化率 55
圖 5.1 以甘胺酸燃燒合成法製備CuGd2O4粉末實驗流程圖 61
圖 5.2 RhB光降解示意圖。 62
圖 5.3 傅立葉轉換紅外光譜儀(FT-IR)工作原理示意圖。 64
圖 5.4 Bruker OPTIK GmbH Rudolf-Plank-Str.27. 65
圖 5.5 分光光度計簡易工作原理示意圖 67
圖 5.6 UV-Visble spectrometer (Shimadzu UV2600). 68
圖 5.7 利用GNP法製備的CuGd2O4的XRD圖譜。 70
圖 5.8 GNP法製備的CuGd2O4粉末的FTIR分析。 72
圖 5.9 CuGd2O4粉末在不同放大倍率下的SEM圖。 74
圖 5.10 CuGd2O4的(a) TEM、(b) HRTEM圖像、(c) FFT繞射圖(d)模擬繞射圖。 76
圖 5.11 透過GNP法製備的CuGd2O4粉末的STEM-EDS圖像和元素分布 (a) STEM 圖像(b) Cu (c) Gd (d) O (e) Cu、Gd和O的元素分布圖。 78
圖 5.12 (a) N2吸附/脫附曲線和(b)粉末的孔徑分佈。 80
圖 5.13 CuGd2O4粉末之UV-Visible光譜 (內圖為CuGd2O4 為能隙估計值) 82
圖 5.14 RhB光降解機制理示意圖。 85
圖 5.15 (a)無(b)CuGd2O4催化劑對RhB光降解的吸光度。 86
圖 5.16 ln(C/C0)與光降解時間的速率常數圖。 87


表目錄
表 4 1 GNP法製備的ZnFe2O4和ZnO-ZnFe2O4粉末的比表面積。 42
表 4 2 ZnFe2O4 and ZnO-ZnFe2O4催化劑在不同溫度下(350-500°C)之氫氣產量表 52
表 5 1 在不同銅基尖晶石結構的比表面積比較[64],[65]。 79
表 5 2 不同光催化劑的速率常數 (k) 比較。 85


[1]S. P. Asprey, B. W. Wojciechowski, and B. A. Peppley, “Kinetic studies using temperature-scanning: The steam-reforming of methanol,” Appl. Catal. A Gen., vol. 179, no. 1–2, pp. 51–70, 1999, doi: 10.1016/S0926-860X(98)00300-7.
[2]A. Mastalir et al., “Steam reforming of methanol over Cu/ZrO2/CeO= catalysts: A kinetic study,” J. Catal., vol. 230, no. 2, pp. 464–475, 2005, doi: 10.1016/j.jcat.2004.12.020.
[3]P. P. C. Udani, P. V. D. S. Gunawardana, H. C. Lee, and D. H. Kim, “Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts,” Int. J. Hydrogen Energy, vol. 34, no. 18, pp. 7648–7655, 2009, doi: 10.1016/j.ijhydene.2009.07.035.
[4]J. P. Shen and C. Song, “Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells,” Catal. Today, vol. 77, no. 1–2, pp. 89–98, 2002, doi: 10.1016/S0920-5861(02)00235-3.
[5]J. Agrell, H. Birgersson, and M. Boutonnet, “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation,” 2002, doi: 10.1016/S0378-7753(01)01027-8.
[6]T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, and K. Takehira, “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol,” Appl. Catal. A Gen., vol. 263, no. 2, pp. 249–253, 2004, doi: 10.1016/j.apcata.2003.12.018.
[7]A. Szizybalski, F. Girgsdies, A. Rabis, Y. Wang, M. Niederberger, and T. Ressler, “In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol,” J. Catal., vol. 233, no. 2, pp. 297–307, 2005, doi: 10.1016/j.jcat.2005.04.024.
[8]G. Huang, B. J. Liaw, C. J. Jhang, and Y. Z. Chen, “Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts,” Appl. Catal. A Gen., vol. 358, no. 1, pp. 7–12, 2009, doi: 10.1016/j.apcata.2009.01.031.
[9]R. J. Huang, S. Sakthinathan, T. W. Chiu, and C. Dong, “Hydrothermal synthesis of high surface area CuCrO2 for H2 production by methanol steam reforming,” RSC Adv., vol. 11, no. 21, pp. 12607–12613, 2021, doi: 10.1039/d1ra01332g.
[10]T. W. Chiu, R. T. Hong, B. S. Yu, Y. H. Huang, S. Kameoka, and A. P. Tsai, “Improving steam-reforming performance by nanopowdering CuCrO2,” Int. J. Hydrogen Energy, vol. 39, no. 26, pp. 14222–14226, 2014, doi: 10.1016/j.ijhydene.2014.02.104.
[11]B. Y. Hwang, S. Sakthinathan, and T. W. Chiu, “Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x = 0–1) nanopowders catalyst,” Int. J. Hydrogen Energy, vol. 44, no. 5, pp. 2848–2856, 2019, doi: 10.1016/j.ijhydene.2018.12.052.
[12]C. L. Yu et al., “CuFeO2–CeO2 nanopowder catalyst prepared by self-combustion glycine nitrate process and applied for hydrogen production from methanol steam reforming,” Int. J. Hydrogen Energy, vol. 45, no. 32, pp. 15752–15762, 2020, doi: 10.1016/j.ijhydene.2020.04.077.
[13]M. Yang, S. Li, and G. Chen, “High-temperature steam reforming of methanol over ZnO-Al2O3 catalysts,” Appl. Catal. B Environ., vol. 101, no. 3–4, pp. 409–416, 2011, doi: 10.1016/j.apcatb.2010.10.010.
[14]N. Mao, “Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-019-48730-z.
[15]Y. Wu et al., “Hydrogen production from methanol aqueous solution by ZnO/Zn(OH)2 macrostructure photocatalysts,” RSC Adv., vol. 8, no. 21, pp. 11395–11402, 2018, doi: 10.1039/c8ra00943k.
[16]Y. Piña-Pérez et al., “Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent,” Appl. Catal. B Environ., vol. 230, no. February, pp. 125–134, 2018, doi: 10.1016/j.apcatb.2018.02.047.
[17]A. Dhanalakshmi, B. Natarajan, V. Ramadas, A. Palanimurugan, and S. Thanikaikarasan, “Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles,” Pramana - J. Phys., vol. 87, no. 4, pp. 1–9, 2016, doi: 10.1007/s12043-016-1248-0.
[18]G. P. Sahoo, S. Samanta, D. K. Bhui, S. Pyne, A. Maity, and A. Misra, “Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities,” J. Mol. Liq., vol. 212, pp. 665–670, 2015, doi: 10.1016/j.molliq.2015.10.019.
[19]S. J. Rajoba, L. D. Jadhav, R. S. Kalubarme, and S. N. Yadav, “Influence of synthesis parameters on the physicochemical and electrochemical properties of LiFePO4 for Li-ion battery,” J. Alloys Compd., vol. 774, no. 2, pp. 841–847, 2019, doi: 10.1016/j.jallcom.2018.09.325.
[20]Y. D. Kim et al., “Degradation studies of ceria-based solid oxide fuel cells at intermediate temperature under various load conditions,” J. Power Sources, vol. 452, no. February, p. 227758, 2020, doi: 10.1016/j.jpowsour.2020.227758.
[21]H. Ji, J. Lee, E. Choi, and I. Seo, “Hydrogen production from steam reforming using an indirect heating method,” Int. J. Hydrogen Energy, vol. 43, no. 7, pp. 3655–3663, 2018, doi: 10.1016/j.ijhydene.2017.12.137.
[22]Z. Sun et al., “Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion,” Appl. Catal. B Environ., vol. 269, no. February, p. 118758, 2020, doi: 10.1016/j.apcatb.2020.118758.
[23]H. Li et al., “Sorption enhanced steam reforming of methanol for high-purity hydrogen production over Cu-MgO/Al2O3 bifunctional catalysts,” Appl. Catal. B Environ., vol. 276, no. February, p. 119052, 2020, doi: 10.1016/j.apcatb.2020.119052.
[24]Y. Khani, F. Bahadoran, N. Safari, S. Soltanali, and S. A. Taheri, “Hydrogen production from steam reforming of methanol over Cu-based catalysts: The behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11824–11837, 2019, doi: 10.1016/j.ijhydene.2019.03.031.
[25]L. Selva Roselin and H. W. Chiu, “Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO2 catalysts,” J. Saudi Chem. Soc., vol. 22, no. 6, pp. 692–704, 2018, doi: 10.1016/j.jscs.2017.12.001.
[26]W. H. Chen and B. J. Lin, “Effect of microwave double absorption on hydrogen generation from methanol steam reforming,” Int. J. Hydrogen Energy, 2010, doi: 10.1016/j.ijhydene.2009.12.147.
[27]M. Martinelli, R. Garcia, C. D. Watson, D. C. Cronauer, A. J. Kropf, and G. Jacobs, “Promoting the selectivity of Pt/m-ZrO2 ethanol steam reforming catalysts with k and rb dopants,” Nanomaterials, vol. 11, no. 9, pp. 1–24, 2021, doi: 10.3390/nano11092233.
[28]M. Mosinska et al., “Hydrogen production on Cu-Ni catalysts via the oxy-steam reforming of methanol,” Catalysts, vol. 10, no. 3, 2020, doi: 10.3390/catal10030273.
[29]S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., vol. 60, no. 2, pp. 309–319, 1938, doi: 10.1021/ja01269a023.
[30]F. S. Li et al., “Site preference of Fe in nanoparticles of ZnFe2O4,” J. Magn. Magn. Mater., vol. 268, no. 3, pp. 332–339, 2004, doi: 10.1016/S0304-8853(03)00544-4.
[31]L. Y. Dolgikh, I. L. Stolyarchuk, L. A. Staraya, I. V. Vasylenko, Y. I. Pyatnitsky, and P. E. Strizhak, “Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts,” Catal. petrochemistry, no. 29, pp. 1–10, 2020, doi: 10.15407/kataliz2020.29.001.
[32]T. Liu, D. Xu, D. Wu, G. Liu, and X. Hong, “Spinel ZnFe2O4 Regulates Copper Sites for CO2 Hydrogenation to Methanol,” ACS Sustain. Chem. Eng., vol. 9, no. 11, pp. 4033–4041, 2021, doi: 10.1021/acssuschemeng.0c07682.
[33]L. Wang et al., “The synergistic effect between ZnO and ZnCr2O4 on the catalytic performance for isobutanol synthesis from syngas,” Fuel, vol. 253, no. February, pp. 1570–1577, 2019, doi: 10.1016/j.fuel.2019.05.139.
[34]J. Wen et al., “Mesoporous Ce-doped ZnO hollow microspheres for oxidation of 1,2-dichlorobenzene,” Catal. Sci. Technol., vol. 10, no. 11, pp. 3739–3747, 2020, doi: 10.1039/d0cy00272k.
[35]M. Liang, W. Kang, and K. Xie, “Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique,” J. Nat. Gas Chem., vol. 18, no. 1, pp. 110–113, 2009, doi: 10.1016/S1003-9953(08)60073-0.
[36]F. Papa, L. Patron, O. Carp, C. Paraschiv, and I. Balint, “Catalytic Behavoir of Neodymium Substituted Zinc Ferrites in Oxidative Co Upling O F Methane,” Rev. Roum. Chim., vol. 55, no. 1, pp. 33–38, 2010.
[37]E. T. Acta, P. C. I. G. Murgulescu, R. Academy, S. Independentei, and B. Academy, “thermochimica acta,” vol. 291, pp. 171–177, 1997.
[38]S. Bepari and D. Kuila, “Science Direct Steam reforming of methanol , ethanol and glycerol over nickel-based catalysts-A review,” Int. J. Hydrogen Energy, vol. 45, no. 36, pp. 18090–18113, 2019, doi: 10.1016/j.ijhydene.2019.08.003.
[39]P. Tahay, Y. Khani, and M. Jabari, “ScienceDirect Synthesis of cubic and hexagonal ZnTiO3 as catalyst support in steam reforming of methanol : Study of physical and chemical properties of copper catalysts on the H2 and CO selectivity and coke formation,” Int. J. Hydrogen Energy, vol. 45, no. 16, pp. 9484–9495, 2020, doi: 10.1016/j.ijhydene.2020.01.149.
[40]V. G. Deshmane, R. Y. Abrokwah, and D. Kuila, “ScienceDirect Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol,” Int. J. Hydrogen Energy, vol. 40, no. 33, pp. 10439–10452, 2015, doi: 10.1016/j.ijhydene.2015.06.084.
[41]S. Liguori, A. Iulianelli, F. Dalena, V. Piemonte, Y. Huang, and A. Basile, “Science Direct Methanol steam reforming in an Al2O3 supported thin Pd-layer membrane reactor over Cu / ZnO / Al2O3 catalyst,” Int. J. Hydrogen Energy, vol. 39, no. 32, pp. 18702–18710, 2013, doi: 10.1016/j.ijhydene.2013.11.113.
[42]K. Ghasemzadeh, E. Andalib, and A. Basile, “ScienceDirect Evaluation of dense Pd e Ag membrane reactor performance during methanol steam reforming in comparison with autothermal reforming using CFD analysis,” Int. J. Hydrogen Energy, vol. 41, no. 20, pp. 8745–8754, 2015, doi: 10.1016/j.ijhydene.2015.11.139.
[43]Y. Khani, N. Safari, and N. Kamyar, “Science Direct High H2 selectivity with low coke formation for methanol steam reforming over,” Int. J. Hydrogen Energy, vol. 47, no. 2, pp. 971–983, 2021, doi: 10.1016/j.ijhydene.2021.10.089.
[44]Y. Khani, F. Bahadoran, N. Safari, and S. Soltanali, “Science Direct Hydrogen production from steam reforming of methanol over Cu-based catalysts : The behavior of ZnxLaxAl1-x O4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11824–11837, 2019, doi: 10.1016/j.ijhydene.2019.03.031.
[45]A. Baban, A. Yediler, N. K. Ciliz, and Z. Muenchen, “Integrated Water Management and CP Implementation for Wool and Textile Blend Processes,” vol. 38, no. 1, pp. 84–90, 2010, doi: 10.1002/clen.200900102.
[46]J. Gu, C. Luo, W. Zhou, Z. Tong, and H. Zhang, “Ultrasonics - Sonochemistry Degradation of Rhodamine B in aqueous solution by laser cavitation,” Ultrason. - Sonochemistry, vol. 68, no. April, p. 105181, 2020, doi: 10.1016/j.ultsonch.2020.105181.
[47]B. Cuiping et al., “Removal of rhodamine B by ozone-based advanced oxidation process,” DES, vol. 278, no. 1–3, pp. 84–90, 2011, doi: 10.1016/j.desal.2011.05.009.
[48]S. Y. Lee, D. Kang, S. Jeong, H. T. Do, and J. H. Kim, “Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation,” 2020, doi: 10.1021/acsomega.9b04127.
[49]S. Rasalingam, R. Peng, and R. T. Koodali, “Applied Catalysis B : Environmental An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials,” "Applied Catal. B, Environ., vol. 174–175, pp. 49–59, 2015, doi: 10.1016/j.apcatb.2015.02.040.
[50]S. A. M. Issa, M. I. Sayyed, M. H. M. Zaid, and K. A. Matori, “Photon parameters for gamma-rays sensing properties of some oxide of lanthanides,” Results Phys., vol. 9, pp. 206–210, 2018, doi: 10.1016/j.rinp.2018.02.039.
[51]H. A. Miran et al., “Thermo-mechanical properties of cubic lanthanide oxides,” Thin Solid Films, vol. 653, no. March 2017, pp. 37–48, 2018, doi: 10.1016/j.tsf.2018.01.063.
[52]H. Jiang, P. Rinke, and M. Scheffler, “Electronic properties of lanthanide oxides from the GW perspective,” vol. 125115, pp. 1–13, 2012, doi: 10.1103/PhysRevB.86.125115.
[53]“Introduction : Frontiers in Lanthanide Chemistry,” vol. 102, no. 6, 2002.
[54]G. Wang, Q. Peng, and Y. Li, “Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications,” vol. 44, no. 5, 2011.
[55]E. Y. Pikalova et al., “Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium,” Int. J. Hydrogen Energy, vol. 43, no. 36, pp. 17373–17386, 2018, doi: 10.1016/j.ijhydene.2018.07.115.
[56]V. S. Kirankumar and S. Sumathi, “A review on photodegradation of organic pollutants using spinel oxide,” Mater. Today Chem., vol. 18, p. 100355, 2020, doi: 10.1016/j.mtchem.2020.100355.
[57]C. Van Tran et al., “New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater,” J. Hazard. Mater., vol. 420, no. April, p. 126636, 2021, doi: 10.1016/j.jhazmat.2021.126636.
[58]M. Sundararajan, L. J. Kennedy, P. Nithya, J. J. Vijaya, and M. Bououdina, “Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method,” J. Phys. Chem. Solids, vol. 108, no. April, pp. 61–75, 2017, doi: 10.1016/j.jpcs.2017.04.002.
[59]M. A. Almessiere, A. D. Korkmaz, Y. Slimani, M. Nawaz, S. Ali, and A. Baykal, “Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites,” Ceram. Int., vol. 45, no. 3, pp. 3449–3458, 2019, doi: 10.1016/j.ceramint.2018.10.260.
[60]T. Tangcharoen, J. T-thienprasert, and C. Kongmark, “Effect of calcination temperature on structural and optical properties of MAl2O4 (M=Ni, Cu, Zn) aluminate spinel nanoparticles,” vol. 8, no. 3, pp. 352–366, 2019.
[61]Z. Y. Tian, H. Vieker, P. Mountapmbeme, and A. Beyer, “In situ characterization of Cu–Co oxides for catalytic application †,” pp. 249–262, 2015, doi: 10.1039/c4fd00192c.
[62]T. W. Chiu, B. S. Yu, Y. R. Wang, K. TeChen, and Y. TeLin, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process,” J. Alloys Compd., vol. 509, no. 6, pp. 2933–2935, 2011, doi: 10.1016/j.jallcom.2010.11.162.
[63]T. W. Chiu and P. S. Huang, “Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process,” Ceram. Int., vol. 39, no. SUPPL.1, pp. S575–S578, 2013, doi: 10.1016/j.ceramint.2012.10.138.
[64]Y. Huang, S. Wang, A. Tsai, and S. Kameoka, “Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 ( X = Fe, Mn, Al, La),” Ceram. Int., vol. 40, no. 3, pp. 4541–4551, 2014, doi: 10.1016/j.ceramint.2013.08.130.
[65]K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, “Applied Catalysis A : General for steam reforming of dimethyl ether,” vol. 341, pp. 139–145, 2008, doi: 10.1016/j.apcata.2008.02.039.
[66]E. Kim, Z. T. Jiang, and K. No, “Measurement and calculation of optical band gap of chromium aluminum oxide films,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 2000, doi: 10.1143/jjap.39.4820.
[67]S. Santra, A. Das, N. S. Das, and K. K. Chattopadhyay, “CuBO2 nanonetwork : a novel and significant candidate for photocatalytic dye degradation,” Bull. Mater. Sci., vol. 41, no. 5, pp. 1–5, 2018, doi: 10.1007/s12034-018-1642-y.
[68]T. Larbi, M. A. Amara, B. Ouni, and M. Amlouk, “Enhanced photocatalytic degradation of methylene blue dye under UV-sunlight irradiation by cesium doped chromium oxide thin films,” Mater. Res. Bull., vol. 95, pp. 152–162, 2017, doi: 10.1016/j.materresbull.2017.07.024.
[69]C. R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, and B. S. Benjamin, “Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles,” Ceram. Int., vol. 41, no. 8, pp. 9301–9313, 2015, doi: 10.1016/j.ceramint.2015.03.238.
[70]J. M. Chem, “light irradiation †,” pp. 3634–3640, 2011, doi: 10.1039/c0jm03827j.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊