資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(44.212.94.18) 您好!臺灣時間:2023/12/12 00:30
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
唐偉豪
研究生(外文):
TANG, WEI-HAO
論文名稱:
深度學習人臉表情姿態偵測技術商業應用研究
論文名稱(外文):
Deep learning face and pose detection business application research
指導教授:
謝東儒
指導教授(外文):
HSIEH, TUNG-JU
口試委員:
謝東儒
、
張陽郎
、
葉士青
口試委員(外文):
HSIEH, TUNG-JU
、
CHANG, YANG-LANG
、
YEH, SHIH-CHING
口試日期:
2022-06-11
學位類別:
碩士
校院名稱:
國立臺北科技大學
系所名稱:
人工智慧與大數據高階管理雙聯碩士學位學程
學門:
電算機學門
學類:
電算機應用學類
論文種類:
學術論文
論文出版年:
2022
畢業學年度:
110
語文別:
中文
論文頁數:
20
中文關鍵詞:
深度學習
、
機器學習
、
人臉辨識
、
MediaPipe
外文關鍵詞:
Deep learning
、
Machine learning
、
Face recognition
、
MediaPipe
相關次數:
被引用:
1
點閱:331
評分:
下載:47
書目收藏:1
近年來科技發展快速,尤其於電腦科學領域發展更受各界關注,驅使得人工智慧(Artificial Intelligence)、大數據(Big Data)、深度學習(Deep Learning)、機器學習(Machine Learning)等相關技術也成為各版面討論度熱度最高的名詞。也因為如此各領域爭相投入大量資源與資金研發相關技術,進而將此類技術運用在各行業。像是網路科技業、金融科技業、AI機器人、電腦視覺、數據分析、服務業、行銷業等,同時漸漸與結合在生活當中。同時,也衍伸出擴增實境(Augmented Reality,簡稱AR)、虛擬實境(Virtual Reality,縮寫VR)、虛擬主播(VTuber )及深偽技術(Deep fake) 的新名詞。對於深度學習、影像處理及人臉辨識的技術及需求增加。
過去在人臉辨識技術常受環境影響使得辨識度不佳的情況時常發生。而現在能使用基於深度學習的人臉辨識技術來增加辨識度及拓展其應用。其中,Google 於2019年推出相關應用MediaPipe。MediaPipe可用於構建多模式音訊、影片或任何時間序列資料的框架。透過MediaPipe 框架的幫助下,可以為 TensorFlow、TF Lite 等推理模型以及媒體處理功能構建相關服務的機器學習管道。
本研究主要針對MediaPipe Face Mesh做為研究方向。MediaPipe Face Mesh 是可以用在移動設備上以即時估計 468 個 3D 人臉標記。採用機器學習來判斷 3D 臉部表面,用以人臉五官為特徵做為實驗基礎,偵測的部份用MediaPipe Face Mesh的人臉偵測結果,而人臉偵測結合了雙眼及嘴巴所現成之三角形並得到三角形重心,同時實驗包含了張眼、閉眼、抬頭、低頭、左右搖擺等實驗數據來研究其應用精準度及實用性。也對轉頭30度、60度及90度分別進行實驗來確認錯誤率。實驗結果顯示,本論文所提之臉部特徵及動作用於Media Pipe可以達到理想辨識結果。
In recent years, the field of computer science has developed rapidly, including Artificial Intelligence, Big Data, machine learning, deep learning, etc. These technologies have gradually become the most discussed terms on the Internet. It also makes countries willing to invest a lot of money in research and development of related technologies, and then apply such technologies in various industries. For example, the Internet technology industry, financial industry, intelligent robots, computer vision, data analysis, etc., are gradually living with our life. At the same time, new terms such as Augmented Reality (AR), Virtual Reality (VR), VTuber, and Deepfake have also been developed. The demand for deep learning, image processing, and face recognition have increased.
In the past, it often happened that facial recognition technology was often affected by the environment and the recognition was poor. Now, face recognition technology based on deep learning can be used to increase recognition and expand its application. Among them, Google launched the related application MediaPipe in 2019. MediaPipe is a framework mainly used to build multimodal audio, video, or any time series data. With the help of the MediaPipe framework, machine learning pipelines can be built for inference models like TensorFlow, TF Lite, and media processing functions.
This research mainly focuses on MediaPipe FaceMesh as the research direction. MediaPipe FaceMesh estimates 468 3D face markers in real-time even on mobile devices. Machine learning is used to determine the 3D face surface, and the facial features are used as the experimental basis. The detection part uses the face detection results of MediaPipe FaceMesh, and the face detection combines the eyes and the mouth. The triangle is obtained and the center of gravity of the triangle is obtained. At the same time, the experiment includes things such as opening eyes, closing eyes, looking up, bowing, and swinging left and right to study its application accuracy. Experiments were also carried out on the face at 30 degrees, 60 degrees, and 90 degrees to confirm the error rate. The experimental results show that Media Pipe can achieve ideal recognition results when it comes to face recognition.
中文摘要 i
英文摘要 iii
誌謝 iv
目錄 v
表目錄 vi
圖目錄 vii
第一章 導論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 論文架構 2
第二章 文獻探討 3
2.1 人臉偵測 (Face Detection) 3
2.2 人臉校正 (Face Alignment) 4
2.3 3D人臉重建(3D Morphable Model) 4
第三章 研究方法 6
3.1 傳統臉部偵測方法 6
3.2 Media Pipe 8
3.3 Media Pipe Face Mesh 9
第四章 研究結果 10
4.1 實驗方法 10
4.1.1 左右轉頭 10
4.1.2 張嘴、閉嘴 11
4.1.3 抬頭、低頭 11
4.1.4 左右擺頭 12
4.1.5 張眼、閉眼 12
4.2 實驗結果 13
4.3 技術應用實例探討 14
4.3.1 技術應用 14
4.3.2 行銷應用 16
第五章 結論 18
5.1 結論 18
5.2 未來展望 18
參考文獻 20
1.P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features" On Computer vision and Pattern Recognition, 2001
2.Google ML Kit Face-Detection https://developers.google.com/ml-kit/vision/face-detection
3.Xiangyu Zhu, Xiaoming Liu, Zhen Lei, Stan Z. Li "Face Alignment in Full Pose Range: A 3D Total Solution" on IEEE 2018, P.146~155
4.A. Bulat and G. Tzimiropoulos "How far are we from solving the 2D & 3D Face Alignment Problem? ( and a dataset of 230,000 3D facial landmarks) " On Computer Vision Laboratory, The University of Nottingham, United Kingdom, 2017
5.Jianzhu Guo, Xiangyu Zhu, Yang Tang , Fan Yang, Zhen Lei, Stan Z. Li "Towards Fast, Accurate and Stable 3D Dense Face Alignment" ECCV, 2020
6.V. Blanz and T. Vetter "A Morphable Model For The Synthesis Of 3D Faces" Tubingen, Germany, 1999
7.Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gerard Medioni "Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network" On IEEE Xplore, USA, 2017
8.M. Turk, A. Pentland "Eigenfaces for Recognition" J Cogn Neurosci 1991; 3 (1): 71–86. doi: https://doi.org/10.1162/jocn.1991.3.1.71
9.W.S. McCulloch and W. Pitts"A Logigal Calculus of The Ideas Immanent in Nervos Activity" Bulletin of Mathematical Biology Vol.52, No.1/2, pp.99-115, 1990
10.G.E. Hinton and R.R. Salakhtdinov "Reducing the Dimensionality of Data with Neural Networks" 2006 Vol 313, Issue 5786 pp.504-507 doi: 10.1126/science.1127647
11.MediaPipe https://google.github.io/mediapipe/
12.A. Yuan and A. Vakunov "Face and Hand tracking in the browser with MediaPipe and TensorFlow.js" Google, 2020
13.K. Sokal "MediaPipe 3D Face Transform" Google Developers, USA 2020
14.Y. Kartynnik, A. Ablavatski, I.Grishchenko, M.Grundmann "Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs", USA, 2019
15.A.Ablavatski and I.Grishchenko "Real-Time ARself-Expression with Machine Learning" Google AI, 2019
16.A.Ablavatski, A.Vakunov, I.Grashchenko, K.Raveendran, M.Zhdanovich "Real-Time Pupil Tracking from Monocular Video for Digital Puppetry" USA, 2020
17.MediaPipe Face Mesh https://google.github.io/mediapipe/solutions/face_mesh
電子全文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
人工智慧在電子商務的應用
2.
應用機器學習機制於物件影像辨識之研究-以TensorFlow為例
3.
時間序列ARIMA與深度學習LSTM預測模型之比較:以台灣股票市場為例
4.
應用機器視覺與深度學習於皮革表面瑕疵檢測
5.
基於深度學習之人臉特徵辨識與應用
6.
深度卷積神經網路中卷積層之分析及比較
7.
應用Tensorflow深度學習機制於影像辨識之研究—以中共軍機影像辨識為例
8.
深度學習於台股動態投資組合之應用
9.
使用卷積神經網路分類龍舌蘭品種
10.
以階層式深度卷積網路實現少樣本的人臉辨識系統
11.
應用深度學習預測區域住房平均價格—以台北市實價登錄為例
12.
運用機器學習方法建構房價預測視覺化平台
13.
人工智慧應用於財報分析之商業模式
14.
應用人工智慧技術於圖書館紙本採購
15.
基於嵌入式系統的深度學習應用之研究—以人臉辨識為例
無相關期刊
1.
機器學習姿態偵測向量圖形人物動畫應用
2.
深度學習於布料瑕疵偵測之應用
3.
AI技術及大數據分析於環境工程之應用- 以台北地區降雨量預測為例
4.
動作捕捉虛擬網紅直播系統
5.
點對點即時虛擬人物線上會議系統
6.
深度學習應用於手勢辨識系統
7.
虛擬實境沉浸式影片遠距教學教室直播系統
8.
使用虛擬化身技術應用於社群媒體影片製作之研究
9.
鋼結構同心斜撐構架之側推及非線性動力歷時分析耐震能力評估
10.
結合電流重複利用技術之超寬頻低雜訊放大器設計
11.
互動字形編輯系統
12.
即時人像去除背景系統基於複數深度學習圖像分割模型
13.
以瀏覽器擴充套件提升網頁事件觸發後HTML差異判斷之速度
14.
租賃市場之租金分析與預測
15.
運用大數據建構錫膏檢測與生產良率品質管制之研究
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室