跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昶成
研究生(外文):LIN, CHANG-CHENG
論文名稱:以場效應晶體檢測槲皮素 與氯化銅反應的吸收光譜變化
論文名稱(外文):Detecting photon absorption induced by quercetin - copper chloride interaction using field effect transistors
指導教授:蔡麗珠蔡麗珠引用關係
指導教授(外文):TSAI, LI-CHU
口試委員:蔡麗珠陳啟東林群哲
口試委員(外文):TSAI, LI-CHUCHEN, CHII-DONGLIN, CHUN-CHE
口試日期:2021-12-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:48
中文關鍵詞:場效應電晶體槲皮素銅離子光電流
外文關鍵詞:Field Effect Transistorsquercetincopper ionphotocurrent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用場效應電晶體(Field-Effect Transistor, FET)作為檢測平台,結合半導體的光敏特性來觀察分子間的吸收變化。首先使用紫外光吸收光譜量測槲皮素及氯化銅之間的反應,以磷酸鹽緩衝水溶液(Phosphate buffered saline, PBS)為溶劑。由光譜的結果得知,槲皮素(Quercetin)與銅離子之間的反應在波長範圍430-450nm內具有吸收光譜的變化,且隨著銅離子濃度的增加,吸收值也逐漸上升,根據比爾定律推算,即可得知分子反應前後的吸收變化,100μM槲皮素結合100μM的氯化銅產生約60%的光吸收變化,以此結果與FET實驗進行對照及驗證。
光強度改變2%時的光電流(Photocurrent)變化量作為分子吸收2%光線變化的情況,將槲皮素及氯化銅檢測的結果進行吸收率定量分析。FET量測分別在有、無場效應作用中進行,在有場效應作用下,1X PBS溶液中,觀察到100μM槲皮素與100μM氯化銅反應前後產生1-3%光吸收變化。0.1X及0.01XPBS溶液的德拜長度(Debye length)較長,在德拜長度內,容易使FET偵測到溶液中離子的電荷變化,不易觀察到分子的吸收變化。在無場效應作用下,只觀察光線的吸收變化,0.1X 及1X PBS溶液中,可量測到100μM槲皮素與10μM至100μM氯化銅反應,會產生1-8%光吸收變化;在0.01 X PBS中,則會產生1-5%的光吸收變化。另外在相同樣品厚度條件下,UV可以觀察1-12%的吸收變化,FET則是觀察到1-8%的吸收變化,總而言之,透過FET觀察槲皮素及氯化銅的吸收變化,證實與UV光譜相同皆能測量出分子反應產生的光吸收變化。

This experiment uses Field-Effect Transistors as the detection platform and combines the photosensitive characteristics of semiconductors to observe the absorption changes between molecules. In the experiment process, first, we measured the reaction between quercetin and copper chloride by ultraviolet-visible spectroscopy. According to the results of the spectroscopy, the reaction between quercetin and copper ions has a change in the absorption spectrum at wavelengths ranging between 430-450nm, and as the concentration of copper ions increases, the absorption value gradually rises. Using Beer's law, we can calculate the change in light absorption before and after a molecular reaction of 100μM quercetin with 100μM copper chloride produces about 60% light absorptance change. The results are compared and verified with the FET experiment.
The calibration is performed before FET detection to facilitate quantitative analysis. We observed the photocurrent change when the light intensity changed by 2% as the result of molecular absorption light changing by 2% compared with the detection of quercetin and copper chloride. FET detection is divided into two parts, whether there is a field effect or not. Under the effect of field effect, Under the effect of field effect, 1-3% absorption change is observed before and after the reaction of 100μMquercetin with 100μM copper chloride in 1X PBS solution. There is a Debye length relationship in 0.1X and 0.01X PBS solutions. With the Debye length, the FET is able to detect changes in ion charge, but there is no change in molecular absorption. Similarly, FET detection without field effect only observes changes in light absorption. The 1-8% light absorption changes of quercetin and 10μM to 100μM copper ions can be detected in PBS solutions of varying ionic strengths. Under the condition of the same sample thickness, UV can observe the absorption change of 1-12%, and FET can observe the absorption change of 1-8%.All in all, the absorption changes of quercetin and copper chloride were observed by FET. It was confirmed that light absorption changes caused by molecular reactions could be detected in the same manner as UV spectroscopy.

摘要 i
致謝 iv
目錄 v
圖目錄 vii
第一章 諸論 1
1.1 研究動機 1
1.2 光學感測器 2
1.3 奈米矽線場效應電晶體的光電流效應 4
1.4 德拜遮蔽效應與電雙層 7
1.5 光譜原理 8
1.5.1 吸收光譜 8
1.5.2 比爾-朗伯定律 9
1.6 槲皮素與銅離子的化學反應 11
第二章 實驗方法與流程 15
2.1 實驗藥品 15
2.2 實驗設備與裝置 16
2.3 程式操作與訊號擷取系統 16
2.3.1 訊號放大器 17
2.3.2 晶片載具 17
2.3.3 流體系統 18
2.3.4 PDMS微流道製作及Ag/AgCl製作 20
2.3.5 光學系統 20
2.4 實驗流程與步驟 21
第三章 結果與討論 24
3.1 UV吸收光譜量測 24
3.2 FET光學量測 31
3.2.1 FET光電流範圍量測 31
3.2.2 FET的光敏性及光學校正 33
3.2.3 光學量測 34
第四章 結論 42
參考文獻 43
附錄一 45
附錄二 46
附錄三 47

1.Čurdová, E., et al., ICP-MS determination of heavy metals in submerged cultures of wood-rotting fungi. Talanta, 2004. 62(3): p. 483-487.
2.Mirzaei, M., et al., Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials, 2011. 186(2): p. 1739-1743.
3.Anand, A., et al., The Extracellular Zn2+ Concentration Surrounding Excited Neurons Is High Enough to Bind Amyloid-β Revealed by a Nanowire Transistor. Small, 2018. 14(24): p. 1704439.
4.Martinez, B., et al., Azobenzenes as Light-Activable Carrier Density Switches in Nanocrystals. The Journal of Physical Chemistry C, 2019. 123(44): p. 27257-27263.
5.Mehta, R.L., et al., Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care, 2007. 11(2): p. R31.
6.Ahn, Y., J. Dunning, and J. Park, Scanning Photocurrent Imaging and Electronic Band Studies in Silicon Nanowire Field Effect Transistors. Nano Letters, 2005. 5(7): p. 1367-1370.
7.Vacic, A., et al., Determination of Molecular Configuration by Debye Length Modulation. Journal of the American Chemical Society, 2011. 133(35): p. 13886-13889.
8.Zheng, Z., et al., Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective Transistors†. Chinese Journal of Chemistry, 2021. 39(4): p. 999-1008.
9.Sun, Y., et al., Design and mechanism of photocurrent-modulated graphene field-effect transistor for ultra-sensitive detection of DNA hybridization. Carbon, 2021. 182: p. 167-174.
10.Javey, A., et al., J. Phys. Rev. Lett., 2004. 92: p. 106804.
11.Perepichka, D.F. and M.R. Bryce, Molecules with Exceptionally Small HOMO–LUMO Gaps. Angewandte Chemie International Edition, 2005. 44(34): p. 5370-5373.
12.Kind, H., et al., Adv. Mater., 2002. 14: p. 158.
13.Meredith, W.J. and J.B. Massey, CHAPTER XVI - THE PROPERTIES OF THE X-RAY FILM, in Fundamental Physics of Radiology (Third Edition), W.J. Meredith and J.B. Massey, Editors. 1977, Butterworth-Heinemann. p. 175-190.
14.Singha Roy, A., et al., An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II). Journal of Luminescence, 2012. 132(11): p. 2943-2951.
15.Jomova, K., et al., Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food and Chemical Toxicology, 2017. 110: p. 340-350.
16.Zhang, L., et al., UV–Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chemistry, 2018. 263: p. 208-215.
17.Dehghan, G. and Z. Khoshkam, Tin(II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chemistry, 2012. 131(2): p. 422-426.
18.Buchweitz, M., et al., Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate. Food Chemistry, 2016. 211: p. 356-364.
19.Chebotarev, A.N. and D.V. Snigur, Study of the acid-base properties of quercetin in aqueous solutions by color measurements. Journal of Analytical Chemistry, 2015. 70(1): p. 55-59.


電子全文 電子全文(網際網路公開日期:20240126)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top