|
1.Čurdová, E., et al., ICP-MS determination of heavy metals in submerged cultures of wood-rotting fungi. Talanta, 2004. 62(3): p. 483-487. 2.Mirzaei, M., et al., Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials, 2011. 186(2): p. 1739-1743. 3.Anand, A., et al., The Extracellular Zn2+ Concentration Surrounding Excited Neurons Is High Enough to Bind Amyloid-β Revealed by a Nanowire Transistor. Small, 2018. 14(24): p. 1704439. 4.Martinez, B., et al., Azobenzenes as Light-Activable Carrier Density Switches in Nanocrystals. The Journal of Physical Chemistry C, 2019. 123(44): p. 27257-27263. 5.Mehta, R.L., et al., Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care, 2007. 11(2): p. R31. 6.Ahn, Y., J. Dunning, and J. Park, Scanning Photocurrent Imaging and Electronic Band Studies in Silicon Nanowire Field Effect Transistors. Nano Letters, 2005. 5(7): p. 1367-1370. 7.Vacic, A., et al., Determination of Molecular Configuration by Debye Length Modulation. Journal of the American Chemical Society, 2011. 133(35): p. 13886-13889. 8.Zheng, Z., et al., Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective Transistors†. Chinese Journal of Chemistry, 2021. 39(4): p. 999-1008. 9.Sun, Y., et al., Design and mechanism of photocurrent-modulated graphene field-effect transistor for ultra-sensitive detection of DNA hybridization. Carbon, 2021. 182: p. 167-174. 10.Javey, A., et al., J. Phys. Rev. Lett., 2004. 92: p. 106804. 11.Perepichka, D.F. and M.R. Bryce, Molecules with Exceptionally Small HOMO–LUMO Gaps. Angewandte Chemie International Edition, 2005. 44(34): p. 5370-5373. 12.Kind, H., et al., Adv. Mater., 2002. 14: p. 158. 13.Meredith, W.J. and J.B. Massey, CHAPTER XVI - THE PROPERTIES OF THE X-RAY FILM, in Fundamental Physics of Radiology (Third Edition), W.J. Meredith and J.B. Massey, Editors. 1977, Butterworth-Heinemann. p. 175-190. 14.Singha Roy, A., et al., An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II). Journal of Luminescence, 2012. 132(11): p. 2943-2951. 15.Jomova, K., et al., Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food and Chemical Toxicology, 2017. 110: p. 340-350. 16.Zhang, L., et al., UV–Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chemistry, 2018. 263: p. 208-215. 17.Dehghan, G. and Z. Khoshkam, Tin(II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chemistry, 2012. 131(2): p. 422-426. 18.Buchweitz, M., et al., Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate. Food Chemistry, 2016. 211: p. 356-364. 19.Chebotarev, A.N. and D.V. Snigur, Study of the acid-base properties of quercetin in aqueous solutions by color measurements. Journal of Analytical Chemistry, 2015. 70(1): p. 55-59.
|