跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉仲倫
研究生(外文):YE, ZHONG-LUN
論文名稱:環氧樹脂/丙烯酸樹脂複合材料的設計與優化用於先進的半導體晶圓封裝
論文名稱(外文):Design and Optimization of Epoxy/Acryalte Resin Composites for Advanced Semiconductor Wafer Packaging
指導教授:程耀毅
指導教授(外文):CHENG, YAO-YI
口試委員:程耀毅戴子安芮祥鵬
口試委員(外文):CHENG, YAO-YIDAI, CHI-ANRWEI, SYANG-PENG
口試日期:2022-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:114
中文關鍵詞:環氧樹脂懸浮聚合晶片封裝丙烯酸樹脂
外文關鍵詞:Epoxy ResinSuspension PolymerizationWafer PackagingAcrylate Resin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今晶片黏結膜常用環氧樹脂當作基底與不同的固化劑做交聯反應,因其在高溫交聯後具有較低的收縮程度、較好的黏著性、較強的硬度。然而因環氧樹脂較硬而脆的特性,使其具有較低抗衝擊性及低韌性成為一大問題,因此我們開發了在此環氧樹脂系統中加入丙烯酸樹脂共聚物(acrylate resin copolymer)作為增韌劑強化其韌性並形成半IPN結構,以增強環氧樹脂-酚醛樹脂網絡的韌性。實驗中主要會透過調整懸浮聚合實驗(Suspension polymerization)合成不同玻璃轉化溫度之壓克力樹脂,搭配與不同固化劑組成比例引入環氧樹脂體系中,來設計最佳晶片黏結膜的最佳配方,隨之而來的晶片黏結膜顯示出了較高的成膜性,可以從GPC分析結果得知我們合成出來的壓克力樹脂皆屬於高分子的產物(分子量大約介於50萬),因此對於後續製膜的加工性能會有所降低,因此調整添加比例會是本實驗主要研究的目標,也可以藉由DMA數據分析結果得知當添加較多比例的壓克力樹脂會使得玻璃轉化溫度(Tg)有明顯的提升(約150℃),而在DMA數據上也有明顯顯示出兩個玻璃轉化溫度(Tg)點(壓克力樹脂相及環氧樹脂相)這代表著相分離的情況發生,但由於壓克力樹脂中主要配方的Methyl methacrylate (MMA)與環氧樹脂相溶性較差的緣故,會使得製膜難度提高導致晶片黏結膜應力破碎,因此調整出最適當的晶片黏結膜製膜手法以及提高成膜性,完成晶片黏結膜的基礎配方及技術開發是本實驗主要的研究方向及目標。
Nowadays,epoxy resin is often used as a substrate for wafer bonding film to cross-link with different curing agents because it has lower shrinkage, better adhesion and stronger hardness after cross-linking at high temperature. However, due to the hard and brittle nature of epoxy resin, it has low impact resistance and low toughness. Therefore, we developed an epoxy resin system by adding acrylate resin copolymer as a toughening agent to strengthen its toughness and form a semi-IPN structure to enhance the toughness of epoxy-phenol resin network. In the experiments, the best formulation of the epoxy resin system was designed by adjusting the composition ratio of acrylate resin with different curing agents at different glass transition temperatures in Suspension polymerization experiments to design the best formulation of the epoxy resin film, and the resultant film showed high film-forming properties, which can be seen from the GPC analysis results.We synthesized acrylic resins are all macromolecular products(molecular weight :500,000),so the processing performance of the subsequent film will be reduced, so adjusting the addition ratio will be the main goal of this experiment, and we can also learn from the DMA data analysis results that when adding a larger proportion of acrylic resins will make the glass transition temperature(Tg)has a significant increase(150℃).The DMA data also clearly shows two glass transition temperature(Tg)points(acrylic resin phase and epoxy resin phase), which represents the occurrence of phase separation, but because the main formulation of acrylic resin Methyl methacrylate(MMA)is less compatible with epoxy resin, it will make the film making difficult and lead to broken wafer bonding film stress.Therefore, it is the main research direction and goal of this experiment to adjust the most suitable film making method and improve the film forming property, and to complete the basic formulation and technology development of wafer bonding film.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
第二章 文獻回顧 2
2.1 環氧樹脂 2
2.1.1 環氧樹脂的歷史與發展 2
2.1.2 環氧樹脂的定 義 3
2.2 環氧樹脂的加工與反應機制 8
2.2.1 環氧樹脂開環機制 8
2.2.2 環氧樹脂固化反應 9
2.2.3 環氧樹脂的增韌機制 19
第三章 實驗方法與材 料 29
3.1 壓克力樹脂增韌劑材料 29
3.1.1 環氧樹脂複合材料 30
3.2 實驗儀器 31
3.2.1 製備壓克力所需儀器 31
3.2.2 製備環氧樹脂複合材料所需儀器 31
3.2.3 材料性質測試各項儀器 32
第四章 實驗設計與儀器分析 33
4.1.1 壓克力高分子量之增韌劑製備 33
4.1.2 低分子量之壓克力增韌劑製備 36
4.1.3 環氧樹脂複合材料的製備 38
4.1.4 低分子量 之壓克力增韌劑製備環氧樹脂複合材料 45
4.2 樣品性質檢測與儀器分析 47
4.2.1 壓克力增韌劑性質檢測 47
4.2.2 環氧樹脂複合材料儀器分析 50
第五章 結果與討論 52
5.1 利用懸浮聚合法合成高分子 量之壓克力增韌劑 52
5.1.1 凝膠滲透層析儀分析分子量 (GPC) 52
5.1.2 差式掃描熱量分析 (DSC) 54
5.1.3 熱重 分析儀 (TGA) 55
5.2 利用懸浮聚合法合成低分子量壓克力增韌劑 56
5.2.1 凝膠滲透層析儀分析分子量 (GPC) 56
5.2.2 差式掃描熱量分析 (DSC) 58
5.2.3 熱重 分析儀 (TGA) 59
5.3 不同 Tg高分子量壓克力增韌環氧樹脂複合材料 60
5.3.1 環氧 -酚醛固化系統之複合材料 60
5.3.2 環氧 -酸酐固化系統之複合材料 80
5.4 低分子量之壓克力增韌環氧樹脂複合材料 99
5.4.1 環氧 -酚醛固化系統之複合材料 99
5.4.2 環氧 -酸酐固化系統之複合材料 104
第六章 結論 109
第七章 參考文獻 110
(1) Cognetti, C. The impact of semiconductor packaging technologies on system integration an overview. In 2009 Proceedings of ESSCIRC, 14-18 Sept. 2009, 2009; pp 23-27. DOI: 10.1109/ESSCIRC.2009.5325925.
(2) Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry 2015, 29, 1-11. DOI: https://doi.org/10.1016/j.jiec.2015.03.026.
(3) Ham, Y. R.; Kim, S. H.; Shin, Y. J.; Lee, D. H.; Yang, M.; Min, J. H.; Shin, J. S. A comparison of some imidazoles in the curing of epoxy resin. Journal of Industrial and Engineering Chemistry 2010, 16 (4), 556-559. DOI: https://doi.org/10.1016/j.jiec.2010.03.022.
(4) Ooi, S. K.; Cook, W. D.; Simon, G. P.; Such, C. H. DSC studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents. Polymer 2000, 41 (10), 3639-3649. DOI: https://doi.org/10.1016/S0032-3861(99)00600-X. Shin, J.-W.; Jeun, J.-P.; Kang, P.-H. Fabrication and characterization of the mechanical properties of multi-walled carbon nanotube-reinforced epoxy resins by e-beam irradiation. Journal of Industrial and Engineering Chemistry 2009, 15 (4), 555-560. DOI: https://doi.org/10.1016/j.jiec.2009.01.012.
(5) Ham, Y.; Kim, S.; Shin, Y.; Lee, D.; Yang, M.; Min, J.; Shin, J. A comparison of some imidazoles in the curing of epoxy resin. Journal of Industrial and Engineering Chemistry - J IND ENG CHEM 2010, 16, 556-559. DOI: 10.1016/j.jiec.2010.03.022.
(6) Luo, S.; Wong, C. P. Moisture absorption in uncured underfill materials. IEEE Transactions on Components and Packaging Technologies 2004, 27 (2), 345-351. DOI: 10.1109/TCAPT.2004.828562.
(7) Barabanova, A. I.; Lokshin, B. V.; Kharitonova, E. P.; Karandi, I. V.; Afanasyev, E. S.; Askadskii, A. A.; Philippova, O. E. Cycloaliphatic epoxy resin cured with anhydride in the absence of catalyst. Colloid and Polymer Science 2019, 297 (3), 409-416. DOI: 10.1007/s00396-018-4430-8.
(8) Capiel, G.; Uicich, J.; Alvarez, V.; Montemartini, P. Improving the water resistance of epoxy–anhydride matrices by the incorporation of bentonite. Polymers for Advanced Technologies 2017, 28 (7), 886-896, https://doi.org/10.1002/pat.3993. DOI: https://doi.org/10.1002/pat.3993 (acccessed 2022/05/29).
(9) Anusic, A.; Resch-Fauster, K.; Mahendran, A. R.; Wuzella, G. Anhydride Cured Bio-Based Epoxy Resin: Effect of Moisture on Thermal and Mechanical Properties. Macromolecular Materials and Engineering 2019, 304 (7), 1900031, https://doi.org/10.1002/mame.201900031. DOI: https://doi.org/10.1002/mame.201900031 (acccessed 2022/05/29).
(10) Matějka, L.; Lövy, J.; Pokorný, S.; Bouchal, K.; Dušek, K. Curing epoxy resins with anhydrides. Model reactions and reaction mechanism. Journal of Polymer Science: Polymer Chemistry Edition 1983, 21 (10), 2873-2885, https://doi.org/10.1002/pol.1983.170211003. DOI: https://doi.org/10.1002/pol.1983.170211003 (acccessed 2022/05/29).
(11) Kai Li, a., Ni Huo,Xinping Liu,Jue Cheng*and Junying Zhang*. Effects of Furan Ring in Epoxy Resin on Thermomechanical Properties of Highly Cross-linked Epoxy Networks: A Molecular
Simulation Study. RSC Advances 2015. DOI: 10.1039/x0xx00000x
(12) Paul, N. C.; Richards, D. H.; Thompson, D. An aliphatic amine cured rubber modified epoxide adhesive: 1. Preparation and preliminary evaluation using a room temperature cure. Polymer 1977, 18 (9), 945-950. DOI: https://doi.org/10.1016/0032-3861(77)90140-9.
(13) Singh, A.; Panda, B.; Mohanty, S.; Nayak, S.; Gupta, M. Thermokinetics behavior of epoxy adhesive reinforced with low viscous aliphatic reactive diluent and nano-fillers. Korean Journal of Chemical Engineering 2017, 1-13. DOI: 10.1007/s11814-017-0221-z.
(14) TALAYEH JALALI, M. E. Kinetics and Thermodynamics of Synthesis of Hybrid Oligomer-Acrylated Cycloaliphatic Epoxy in the Presence of Triphenylphosphine and Triethylamine Catalysts. Polymer Engineering and Color Technology Department 2016. DOI: 10.1002/kin.21038.
(15) Chen, Y.-C.; Chiu, W.-Y.; Lin, K.-F. Kinetics study of imidazole-cured epoxy-phenol resins. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (16), 3233-3242, https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3233::AID-POLA21>3.0.CO;2-A. DOI: https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3233::AID-POLA21>3.0.CO;2-A (acccessed 2022/05/29).
(16) Hayaty, M.; Honarkar, H.; Beheshty, M. H. Curing behavior of dicyandiamide/epoxy resin system using different accelerators. Iranian Polymer Journal 2013, 22 (8), 591-598. DOI: 10.1007/s13726-013-0158-y.
(17) Gundjian, M.; Cole, K. C. Effect of copper on the curing and structure of a DICY-containing epoxy composite system. Journal of Applied Polymer Science 2000, 75 (12), 1458-1473, https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1458::AID-APP4>3.0.CO;2-V. DOI: https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1458::AID-APP4>3.0.CO;2-V (acccessed 2022/05/29).
(18) Bucknall, C. B.; Partridge, I. K. Phase separation in crosslinked resins containing polymeric modifiers. Polymer Engineering & Science 1986, 26 (1), 54-62, https://doi.org/10.1002/pen.760260110. DOI: https://doi.org/10.1002/pen.760260110 (acccessed 2022/05/29).
(19) Reuther, P.; Dünnwald, P.; Tabatabai, M.; Schuh, C.; Hartmann, L.; Ritter, H. Thermally Controlled Acceleration of Epoxy Resin Curing through Polymer-Bound Imidazole Derivatives with High Latency. ACS Applied Polymer Materials 2022, 4 (2), 1150-1158. DOI: 10.1021/acsapm.1c01568.
(20) Rimdusit, S.; Ishida, H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 2000, 41 (22), 7941-7949. DOI: https://doi.org/10.1016/S0032-3861(00)00164-6.
(21) Rimdusit, S.; Kunopast, P.; Dueramae, I. Thermomechanical properties of arylamine-based benzoxazine resins alloyed with epoxy resin. Polymer Engineering & Science 2011, 51 (9), 1797-1807, https://doi.org/10.1002/pen.21969. DOI: https://doi.org/10.1002/pen.21969 (acccessed 2022/05/30).
(22) S. Grishchuk1, Z. M., S. Schmitt1; , J. K.-K., 3*. Structure, thermal and fracture mechanical properties of
benzoxazine-modified amine-cured DGEBA epoxy resins. Department of Polymer Engineering 2011. DOI: 10.3144/expresspolymlett.2011.27.
(23) Rimdusit, S.; Ishida, H. Synergism and multiple mechanical relaxations observed in ternary systems based on benzoxazine, epoxy, and phenolic resins. Journal of Polymer Science Part B: Polymer Physics 2000, 38 (13), 1687-1698, https://doi.org/10.1002/1099-0488(20000701)38:13<1687::AID-POLB20>3.0.CO;2-T. DOI: https://doi.org/10.1002/1099-0488(20000701)38:13<1687::AID-POLB20>3.0.CO;2-T (acccessed 2022/05/30).
(24) Peng, C.; Gao, C.; Yuan, Y.; Wu, Z.; zhou, D. Synthesis and application of a benzoxazine-type phosphorus-containing monomer on epoxy/benzoxazine copolymer: Thermal stability and compatibility with liquid oxygen. Polymer Degradation and Stability 2018, 157, 131-142. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.10.002.
(25) McGarry, F. J. Building Design with Fibre Reinforced Materials. 1970. DOI: 10.1098/rspa.1970.0165. Zhao, Q.; Hoa, S. V. Toughening Mechanism of Epoxy Resins with Micro/Nano Particles. Journal of Composite Materials 2006, 41 (2), 201-219. DOI: 10.1177/0021998306063361 (acccessed 2022/05/30).
(26) Unnikrishnan, K. P.; Thachil, E. T. Toughening of epoxy resins. Designed Monomers and Polymers 2006, 9 (2), 129-152. DOI: 10.1163/156855506776382664.
(27) Garg, A. C.; Mai, Y.-W. Failure mechanisms in toughened epoxy resins—A review. Composites Science and Technology 1988, 31 (3), 179-223. DOI: https://doi.org/10.1016/0266-3538(88)90009-7.
(28) Thachil, K. P. U. E. T. Toughening of epoxy resins. Designed Monomers and Polymers 2012. DOI: https://doi.org/10.1163/156855506776382664.
(29) Bascom, W. D.; Cottington, R. L.; Jones, R. L.; Peyser, P. The fracture of epoxy- and elastomer-modified epoxy polymers in bulk and as adhesives. Journal of Applied Polymer Science 1975, 19 (9), 2545-2562, https://doi.org/10.1002/app.1975.070190917. DOI: https://doi.org/10.1002/app.1975.070190917 (acccessed 2022/05/30).
(30) Anu Surendran a, J. J. b., Jyotishkumar Parameswaranpillai c, S. Anas ORCID logobd and Sabu Thomas. An overview of viscoelastic phase separation in epoxy based blends. ROYAL SOCIETY OF CHEMISTRY 2019. DOI: 10.1039/C9SM02361E
(31) Rutnakornpituk, M. Thermoplastic Toughened Epoxy Networks and
Their Toughening Mechanisms in Some Systems. Naresuan University Journal 2005.
(32) Surendran, A.; Pionteck, J.; Vogel, R.; Kalarikkal, N.; V G, G.; Thomas, S. Effect of organically modified clay on the morphology, rheology and viscoelasticity of epoxy –thermoplastic nanocomposites. Polymer Testing 2018, 70, 18-29. DOI: https://doi.org/10.1016/j.polymertesting.2018.06.023.
(33) Colombini, D.; Merle, G.; Martinez-Vega, J. J.; Girard-Reydet, E.; Pascault, J. P.; Gerard, J. F. Effects of thermal treatments on the viscoelastic behavior of the interphase relaxation in a compatibilized thermoset/thermoplastic blend. Polymer 1999, 40 (4), 935-943. DOI: https://doi.org/10.1016/S0032-3861(98)00303-6.
(34) Bajpai, A.; Wetzel, B.; Friedrich, K. High strength epoxy system modified with soft block copolymer and stiff core-shell rubber nanoparticles: Morphology, mechanical properties, and fracture mechanisms. Express Polymer Letters 2020, 14 (4), 384-399. DOI: https://doi.org/10.3144/expresspolymlett.2020.32 Publicly Available Content Database.
(35) Mousavi, S. R.; Estaji, S.; Raouf Javidi, M.; Paydayesh, A.; Khonakdar, H. A.; Arjmand, M.; Rostami, E.; Jafari, S. H. Toughening of epoxy resin systems using core–shell rubber particles: a literature review. Journal of Materials Science 2021, 56 (33), 18345-18367. DOI: 10.1007/s10853-021-06329-8.
(36) Ning, N.; Liu, W.; Hu, Q.; Zhang, L.; Jiang, Q.; Qiu, Y.; Wei, Y. Impressive epoxy toughening by a structure-engineered core/shell polymer nanoparticle. Composites Science and Technology 2020, 199, 108364. DOI: https://doi.org/10.1016/j.compscitech.2020.108364.
(37) Danso, R.; Hoedebecke, B.; Whang, K.; Sarrami, S.; Johnston, A.; Flipse, S.; Wong, N.; Rawls, H. R. Development of an oxirane/acrylate interpenetrating polymer network (IPN) resin system. Dent Mater 2018, 34 (10), 1459-1465. DOI: 10.1016/j.dental.2018.06.013 PubMed. Gryshchuk, O.; Karger-Kocsis, J. Influence of the type of epoxy hardener on the structure and properties of interpenetrated vinyl ester/epoxy resins. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (21), 5471-5481, https://doi.org/10.1002/pola.20371. DOI: https://doi.org/10.1002/pola.20371 (acccessed 2022/05/31).
(38) Karger-Kocsis, J.; Gryshchuk, O.; Jost, N. Toughness response of vinylester/epoxy-based thermosets of interpenetrating network structure as a function of the epoxy resin formulation: Effects of the cyclohexylene linkage. Journal of Applied Polymer Science 2003, 88 (8), 2124-2131, https://doi.org/10.1002/app.11946. DOI: https://doi.org/10.1002/app.11946 (acccessed 2022/05/31).
(39) Farooq, U.; Teuwen, J.; Dransfeld, C. Toughening of Epoxy Systems with Interpenetrating Polymer Network (IPN): A Review. Polymers (Basel) 2020, 12 (9), 1908. DOI: 10.3390/polym12091908 PubMed.
(40) Hoare, T.; Kohane, D. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer 49: 1993-2007. Polymer 2008, 49, 1993-2007. DOI: 10.1016/j.polymer.2008.01.027.
(41) Kausar, A. Interpenetrating polymer network and nanocomposite IPN of polyurethane/epoxy: a review on fundamentals and advancements. Polymer-Plastics Technology and Materials 2019, 58 (7), 691-706. DOI: 10.1080/25740881.2018.1563114.
(42) Yu, M.; Qi, S.; Fu, J.; Yang, P. A.; Zhu, M. Preparation and characterization of a novel magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Smart Materials and Structures 2015, 24 (4), 045009. DOI: 10.1088/0964-1726/24/4/045009. Mahesh, K. P. O.; Alagar, M.; Ananda Kumar, S. Mechanical, thermal and morphological behavior of bismaleimide modified polyurethane-epoxy IPN matrices. Polymers for Advanced Technologies 2003, 14 (2), 137-146, https://doi.org/10.1002/pat.341. DOI: https://doi.org/10.1002/pat.341 (acccessed 2022/05/31).
(43) Altuna, F. I.; Espósito, L. H.; Ruseckaite, R. A.; Stefani, P. M. Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. Journal of Applied Polymer Science 2011, 120 (2), 789-798, https://doi.org/10.1002/app.33097. DOI: https://doi.org/10.1002/app.33097 (acccessed 2022/06/03).
(44) Frigione, M.; Acierno, D.; Mascia, L. Miscibilization of low molecular weight functionalized polyethylenes in epoxy resins. I. Effects of composition and modifications chemistry. Journal of Applied Polymer Science 1999, 73 (8), 1457-1470, https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1457::AID-APP15>3.0.CO;2-J. DOI: https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1457::AID-APP15>3.0.CO;2-J (acccessed 2022/06/04).


電子全文 電子全文(網際網路公開日期:20270720)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top