|
(1) Cognetti, C. The impact of semiconductor packaging technologies on system integration an overview. In 2009 Proceedings of ESSCIRC, 14-18 Sept. 2009, 2009; pp 23-27. DOI: 10.1109/ESSCIRC.2009.5325925. (2) Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry 2015, 29, 1-11. DOI: https://doi.org/10.1016/j.jiec.2015.03.026. (3) Ham, Y. R.; Kim, S. H.; Shin, Y. J.; Lee, D. H.; Yang, M.; Min, J. H.; Shin, J. S. A comparison of some imidazoles in the curing of epoxy resin. Journal of Industrial and Engineering Chemistry 2010, 16 (4), 556-559. DOI: https://doi.org/10.1016/j.jiec.2010.03.022. (4) Ooi, S. K.; Cook, W. D.; Simon, G. P.; Such, C. H. DSC studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents. Polymer 2000, 41 (10), 3639-3649. DOI: https://doi.org/10.1016/S0032-3861(99)00600-X. Shin, J.-W.; Jeun, J.-P.; Kang, P.-H. Fabrication and characterization of the mechanical properties of multi-walled carbon nanotube-reinforced epoxy resins by e-beam irradiation. Journal of Industrial and Engineering Chemistry 2009, 15 (4), 555-560. DOI: https://doi.org/10.1016/j.jiec.2009.01.012. (5) Ham, Y.; Kim, S.; Shin, Y.; Lee, D.; Yang, M.; Min, J.; Shin, J. A comparison of some imidazoles in the curing of epoxy resin. Journal of Industrial and Engineering Chemistry - J IND ENG CHEM 2010, 16, 556-559. DOI: 10.1016/j.jiec.2010.03.022. (6) Luo, S.; Wong, C. P. Moisture absorption in uncured underfill materials. IEEE Transactions on Components and Packaging Technologies 2004, 27 (2), 345-351. DOI: 10.1109/TCAPT.2004.828562. (7) Barabanova, A. I.; Lokshin, B. V.; Kharitonova, E. P.; Karandi, I. V.; Afanasyev, E. S.; Askadskii, A. A.; Philippova, O. E. Cycloaliphatic epoxy resin cured with anhydride in the absence of catalyst. Colloid and Polymer Science 2019, 297 (3), 409-416. DOI: 10.1007/s00396-018-4430-8. (8) Capiel, G.; Uicich, J.; Alvarez, V.; Montemartini, P. Improving the water resistance of epoxy–anhydride matrices by the incorporation of bentonite. Polymers for Advanced Technologies 2017, 28 (7), 886-896, https://doi.org/10.1002/pat.3993. DOI: https://doi.org/10.1002/pat.3993 (acccessed 2022/05/29). (9) Anusic, A.; Resch-Fauster, K.; Mahendran, A. R.; Wuzella, G. Anhydride Cured Bio-Based Epoxy Resin: Effect of Moisture on Thermal and Mechanical Properties. Macromolecular Materials and Engineering 2019, 304 (7), 1900031, https://doi.org/10.1002/mame.201900031. DOI: https://doi.org/10.1002/mame.201900031 (acccessed 2022/05/29). (10) Matějka, L.; Lövy, J.; Pokorný, S.; Bouchal, K.; Dušek, K. Curing epoxy resins with anhydrides. Model reactions and reaction mechanism. Journal of Polymer Science: Polymer Chemistry Edition 1983, 21 (10), 2873-2885, https://doi.org/10.1002/pol.1983.170211003. DOI: https://doi.org/10.1002/pol.1983.170211003 (acccessed 2022/05/29). (11) Kai Li, a., Ni Huo,Xinping Liu,Jue Cheng*and Junying Zhang*. Effects of Furan Ring in Epoxy Resin on Thermomechanical Properties of Highly Cross-linked Epoxy Networks: A Molecular Simulation Study. RSC Advances 2015. DOI: 10.1039/x0xx00000x (12) Paul, N. C.; Richards, D. H.; Thompson, D. An aliphatic amine cured rubber modified epoxide adhesive: 1. Preparation and preliminary evaluation using a room temperature cure. Polymer 1977, 18 (9), 945-950. DOI: https://doi.org/10.1016/0032-3861(77)90140-9. (13) Singh, A.; Panda, B.; Mohanty, S.; Nayak, S.; Gupta, M. Thermokinetics behavior of epoxy adhesive reinforced with low viscous aliphatic reactive diluent and nano-fillers. Korean Journal of Chemical Engineering 2017, 1-13. DOI: 10.1007/s11814-017-0221-z. (14) TALAYEH JALALI, M. E. Kinetics and Thermodynamics of Synthesis of Hybrid Oligomer-Acrylated Cycloaliphatic Epoxy in the Presence of Triphenylphosphine and Triethylamine Catalysts. Polymer Engineering and Color Technology Department 2016. DOI: 10.1002/kin.21038. (15) Chen, Y.-C.; Chiu, W.-Y.; Lin, K.-F. Kinetics study of imidazole-cured epoxy-phenol resins. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (16), 3233-3242, https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3233::AID-POLA21>3.0.CO;2-A. DOI: https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3233::AID-POLA21>3.0.CO;2-A (acccessed 2022/05/29). (16) Hayaty, M.; Honarkar, H.; Beheshty, M. H. Curing behavior of dicyandiamide/epoxy resin system using different accelerators. Iranian Polymer Journal 2013, 22 (8), 591-598. DOI: 10.1007/s13726-013-0158-y. (17) Gundjian, M.; Cole, K. C. Effect of copper on the curing and structure of a DICY-containing epoxy composite system. Journal of Applied Polymer Science 2000, 75 (12), 1458-1473, https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1458::AID-APP4>3.0.CO;2-V. DOI: https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1458::AID-APP4>3.0.CO;2-V (acccessed 2022/05/29). (18) Bucknall, C. B.; Partridge, I. K. Phase separation in crosslinked resins containing polymeric modifiers. Polymer Engineering & Science 1986, 26 (1), 54-62, https://doi.org/10.1002/pen.760260110. DOI: https://doi.org/10.1002/pen.760260110 (acccessed 2022/05/29). (19) Reuther, P.; Dünnwald, P.; Tabatabai, M.; Schuh, C.; Hartmann, L.; Ritter, H. Thermally Controlled Acceleration of Epoxy Resin Curing through Polymer-Bound Imidazole Derivatives with High Latency. ACS Applied Polymer Materials 2022, 4 (2), 1150-1158. DOI: 10.1021/acsapm.1c01568. (20) Rimdusit, S.; Ishida, H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 2000, 41 (22), 7941-7949. DOI: https://doi.org/10.1016/S0032-3861(00)00164-6. (21) Rimdusit, S.; Kunopast, P.; Dueramae, I. Thermomechanical properties of arylamine-based benzoxazine resins alloyed with epoxy resin. Polymer Engineering & Science 2011, 51 (9), 1797-1807, https://doi.org/10.1002/pen.21969. DOI: https://doi.org/10.1002/pen.21969 (acccessed 2022/05/30). (22) S. Grishchuk1, Z. M., S. Schmitt1; , J. K.-K., 3*. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins. Department of Polymer Engineering 2011. DOI: 10.3144/expresspolymlett.2011.27. (23) Rimdusit, S.; Ishida, H. Synergism and multiple mechanical relaxations observed in ternary systems based on benzoxazine, epoxy, and phenolic resins. Journal of Polymer Science Part B: Polymer Physics 2000, 38 (13), 1687-1698, https://doi.org/10.1002/1099-0488(20000701)38:13<1687::AID-POLB20>3.0.CO;2-T. DOI: https://doi.org/10.1002/1099-0488(20000701)38:13<1687::AID-POLB20>3.0.CO;2-T (acccessed 2022/05/30). (24) Peng, C.; Gao, C.; Yuan, Y.; Wu, Z.; zhou, D. Synthesis and application of a benzoxazine-type phosphorus-containing monomer on epoxy/benzoxazine copolymer: Thermal stability and compatibility with liquid oxygen. Polymer Degradation and Stability 2018, 157, 131-142. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.10.002. (25) McGarry, F. J. Building Design with Fibre Reinforced Materials. 1970. DOI: 10.1098/rspa.1970.0165. Zhao, Q.; Hoa, S. V. Toughening Mechanism of Epoxy Resins with Micro/Nano Particles. Journal of Composite Materials 2006, 41 (2), 201-219. DOI: 10.1177/0021998306063361 (acccessed 2022/05/30). (26) Unnikrishnan, K. P.; Thachil, E. T. Toughening of epoxy resins. Designed Monomers and Polymers 2006, 9 (2), 129-152. DOI: 10.1163/156855506776382664. (27) Garg, A. C.; Mai, Y.-W. Failure mechanisms in toughened epoxy resins—A review. Composites Science and Technology 1988, 31 (3), 179-223. DOI: https://doi.org/10.1016/0266-3538(88)90009-7. (28) Thachil, K. P. U. E. T. Toughening of epoxy resins. Designed Monomers and Polymers 2012. DOI: https://doi.org/10.1163/156855506776382664. (29) Bascom, W. D.; Cottington, R. L.; Jones, R. L.; Peyser, P. The fracture of epoxy- and elastomer-modified epoxy polymers in bulk and as adhesives. Journal of Applied Polymer Science 1975, 19 (9), 2545-2562, https://doi.org/10.1002/app.1975.070190917. DOI: https://doi.org/10.1002/app.1975.070190917 (acccessed 2022/05/30). (30) Anu Surendran a, J. J. b., Jyotishkumar Parameswaranpillai c, S. Anas ORCID logobd and Sabu Thomas. An overview of viscoelastic phase separation in epoxy based blends. ROYAL SOCIETY OF CHEMISTRY 2019. DOI: 10.1039/C9SM02361E (31) Rutnakornpituk, M. Thermoplastic Toughened Epoxy Networks and Their Toughening Mechanisms in Some Systems. Naresuan University Journal 2005. (32) Surendran, A.; Pionteck, J.; Vogel, R.; Kalarikkal, N.; V G, G.; Thomas, S. Effect of organically modified clay on the morphology, rheology and viscoelasticity of epoxy –thermoplastic nanocomposites. Polymer Testing 2018, 70, 18-29. DOI: https://doi.org/10.1016/j.polymertesting.2018.06.023. (33) Colombini, D.; Merle, G.; Martinez-Vega, J. J.; Girard-Reydet, E.; Pascault, J. P.; Gerard, J. F. Effects of thermal treatments on the viscoelastic behavior of the interphase relaxation in a compatibilized thermoset/thermoplastic blend. Polymer 1999, 40 (4), 935-943. DOI: https://doi.org/10.1016/S0032-3861(98)00303-6. (34) Bajpai, A.; Wetzel, B.; Friedrich, K. High strength epoxy system modified with soft block copolymer and stiff core-shell rubber nanoparticles: Morphology, mechanical properties, and fracture mechanisms. Express Polymer Letters 2020, 14 (4), 384-399. DOI: https://doi.org/10.3144/expresspolymlett.2020.32 Publicly Available Content Database. (35) Mousavi, S. R.; Estaji, S.; Raouf Javidi, M.; Paydayesh, A.; Khonakdar, H. A.; Arjmand, M.; Rostami, E.; Jafari, S. H. Toughening of epoxy resin systems using core–shell rubber particles: a literature review. Journal of Materials Science 2021, 56 (33), 18345-18367. DOI: 10.1007/s10853-021-06329-8. (36) Ning, N.; Liu, W.; Hu, Q.; Zhang, L.; Jiang, Q.; Qiu, Y.; Wei, Y. Impressive epoxy toughening by a structure-engineered core/shell polymer nanoparticle. Composites Science and Technology 2020, 199, 108364. DOI: https://doi.org/10.1016/j.compscitech.2020.108364. (37) Danso, R.; Hoedebecke, B.; Whang, K.; Sarrami, S.; Johnston, A.; Flipse, S.; Wong, N.; Rawls, H. R. Development of an oxirane/acrylate interpenetrating polymer network (IPN) resin system. Dent Mater 2018, 34 (10), 1459-1465. DOI: 10.1016/j.dental.2018.06.013 PubMed. Gryshchuk, O.; Karger-Kocsis, J. Influence of the type of epoxy hardener on the structure and properties of interpenetrated vinyl ester/epoxy resins. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (21), 5471-5481, https://doi.org/10.1002/pola.20371. DOI: https://doi.org/10.1002/pola.20371 (acccessed 2022/05/31). (38) Karger-Kocsis, J.; Gryshchuk, O.; Jost, N. Toughness response of vinylester/epoxy-based thermosets of interpenetrating network structure as a function of the epoxy resin formulation: Effects of the cyclohexylene linkage. Journal of Applied Polymer Science 2003, 88 (8), 2124-2131, https://doi.org/10.1002/app.11946. DOI: https://doi.org/10.1002/app.11946 (acccessed 2022/05/31). (39) Farooq, U.; Teuwen, J.; Dransfeld, C. Toughening of Epoxy Systems with Interpenetrating Polymer Network (IPN): A Review. Polymers (Basel) 2020, 12 (9), 1908. DOI: 10.3390/polym12091908 PubMed. (40) Hoare, T.; Kohane, D. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer 49: 1993-2007. Polymer 2008, 49, 1993-2007. DOI: 10.1016/j.polymer.2008.01.027. (41) Kausar, A. Interpenetrating polymer network and nanocomposite IPN of polyurethane/epoxy: a review on fundamentals and advancements. Polymer-Plastics Technology and Materials 2019, 58 (7), 691-706. DOI: 10.1080/25740881.2018.1563114. (42) Yu, M.; Qi, S.; Fu, J.; Yang, P. A.; Zhu, M. Preparation and characterization of a novel magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Smart Materials and Structures 2015, 24 (4), 045009. DOI: 10.1088/0964-1726/24/4/045009. Mahesh, K. P. O.; Alagar, M.; Ananda Kumar, S. Mechanical, thermal and morphological behavior of bismaleimide modified polyurethane-epoxy IPN matrices. Polymers for Advanced Technologies 2003, 14 (2), 137-146, https://doi.org/10.1002/pat.341. DOI: https://doi.org/10.1002/pat.341 (acccessed 2022/05/31). (43) Altuna, F. I.; Espósito, L. H.; Ruseckaite, R. A.; Stefani, P. M. Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. Journal of Applied Polymer Science 2011, 120 (2), 789-798, https://doi.org/10.1002/app.33097. DOI: https://doi.org/10.1002/app.33097 (acccessed 2022/06/03). (44) Frigione, M.; Acierno, D.; Mascia, L. Miscibilization of low molecular weight functionalized polyethylenes in epoxy resins. I. Effects of composition and modifications chemistry. Journal of Applied Polymer Science 1999, 73 (8), 1457-1470, https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1457::AID-APP15>3.0.CO;2-J. DOI: https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1457::AID-APP15>3.0.CO;2-J (acccessed 2022/06/04).
|