跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 10:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施俊浩
研究生(外文):SHIH, CHUN-HAO
論文名稱:不同還原劑、封端劑下制備奈米銅線
論文名稱(外文):Using Different Reducing and Capping Agent to Synthesis Copper Nanowires
指導教授:程耀毅
指導教授(外文):CHENG, YAO-YI
口試委員:芮祥鵬戴子安程耀毅
口試委員(外文):RWEI, SYANG-PENGDAI, CHI-ANCHENG, YAO-YI
口試日期:2022-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:73
中文關鍵詞:奈米銅線抗壞血酸聚甲基丙烯酸甲酯
外文關鍵詞:copper nanowiresascorbic acidglucosepolymethyl methacrylate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,人們常利用奈米銅線製成透明導電電極以取代傳統氧化銦錫電極,銅的優點為天然豐度比銀高了1000倍,因此價格便宜,而導電度也只比銀稍低,且所製成奈米銅線配成導電油墨並噴塗於PET薄膜上,將會擁有可撓曲性,此特性相較於傳統氧化銦錫電極更可應用於穿戴裝置、平面顯器、感光元件等。
合成奈米銅線需要銅離子來源、還原劑、封端劑。本研究中,我們將以氯化銅作為銅離子來源,還原劑將使用葡萄糖或抗壞血酸,封端劑將使用十六或十八烷基胺,在不同還原劑、封端劑的情況下比較所得到的奈米銅線的型態、直徑、長度、長徑比,並利用旋轉塗佈,塗佈上聚甲基丙烯酸甲酯(PMMA)增加銅線的抗氧化性,並測定透光度、電阻率。

Recent years, people often use copper nanowires to produce transparent conductive electrodes to replace traditional indium tin oxide electrodes. The advantage of copper is its natural abundance is 1000 times higher, lower price, and slightly lower conductivity than silver. The copper nanowires is made into conductive ink can be sprayed on PET film of hugh flexibility. Compared with traditional indium tin oxide electrodes, this feature can be applied to wearable devices, flat-panel displays, photosensitive elements, etc.
To synthesis of copper nanowires requires copper ions, reducing agent, and capping agent. In this study, we will use copper chloride as the source of copper ions, glucose or ascorbic acid as the reducing agent, and hexadecylamine or Octadecylamine as capping agent. The shape, diameter, length and aspect ratio of the obtained copper nanowires will be compared. Polymethyl methacrylate (PMMA) will be further coated to increase the oxidation resistance of the copper nanowires. The transmittance and resistivity will be also examined.

摘要-----i
ABSTRACT-----ii
誌謝-----iii
目錄-----iv
表目錄-----vi
圖目錄-----vii
1 第一章 緒論-----1
1.1 前言-----1
1.2 研究動機-----3
2 第二章 文獻回顧-----5
2.1 奈米銅線的合成-----5
2.2 純化奈米銅線-----7
2.3 表面處理-----10
2.4 抗氧化層-----13
2.4.1 聚甲基丙烯酸甲酯-----15
2.5 可撓曲熱敏感PET薄膜-----19
3 第三章 實驗-----22
3.1 實驗藥品及耗材-----22
3.1.1 制備奈米銅線所需要品及耗材-----22
3.1.2 純化及酸洗奈米銅線所需藥品及耗材-----25
3.1.3 奈米銅線上圖佈PMMA所需要品及耗材-----27
3.2 實驗流程-----28
3.2.1 葡萄糖制備奈米銅線流程-----28
3.2.2 抗壞血酸制備奈米銅線流程-----30
3.2.3 酸洗奈米銅線-----32
3.2.4 奈米銅線噴塗及塗佈PMMA-----32
3.3 測試分析儀器型號及用途-----34
4 第四章 結果與討論-----39
4.1 葡萄糖制備奈米銅線-----39
4.2 抗壞血酸制備奈米銅線-----42
4.3 乳酸酸洗奈米銅線-----45
4.3.1 乳酸酸洗銅線XRD鑑定-----45
4.3.2 乳酸酸洗FT-IR鑑定-----48
4.4 導電薄膜之性質-----50
4.4.1 長徑比-----50
4.4.2 純銅膜抗氧化性質-----53
4.4.3 塗佈PMMA鑑定-----55
4.4.4 塗佈PMMA後銅膜抗氧化性-----58
4.4.5 透光度-----63
4.5 彎曲測試-----65
5 第五章 結論-----69
6 第六章 參考文獻-----70


[1] H.-G. Im, S.-H. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J.-Y. Lee, I.-D. Kim, B.-S. Bae, Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics, ACS nano, 8 (2014) 10973-10979.
[2] A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Advanced Materials, 23 (2011) 4798-4803.
[3] S. Ye, A.R. Rathmell, Z. Chen, I.E. Stewart, B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors, Advanced materials, 26 (2014) 6670-6687.
[4] Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong, J. Moon, Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics, NPG Asia Materials, 6 (2014) e105-e105.
[5] Y. Wang, P. Liu, H. Wang, B. Zeng, J. Wang, F. Chi, Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode, Journal of Materials Science, 54 (2019) 2343-2350.
[6] H. Xiang, T. Guo, M. Xu, H. Lu, S. Liu, G. Yu, Ultrathin copper nanowire synthesis with tunable morphology using organic amines for transparent conductors, ACS Applied Nano Materials, 1 (2018) 3754-3759.
[7] M. Mohl, P. Pusztai, A. Kukovecz, Z. Konya, J. Kukkola, K. Kordas, R. Vajtai, P.M. Ajayan, Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires, Langmuir, 26 (2010) 16496-16502.
[8] Y. Wang, P. Liu, B. Zeng, L. Liu, J. Yang, Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes, Nanoscale research letters, 13 (2018) 1-10.
[9] A. Umer, S. Naveed, N. Ramzan, M.S. Rafique, M. Imran, A green method for the synthesis of copper nanoparticles using L-ascorbic acid, Matéria (Rio de janeiro), 19 (2014) 197-203.
[10] S. Ding, Y. Tian, J. Jiu, K. Suganuma, Highly conductive and transparent copper nanowire electrodes on surface coated flexible and heat-sensitive substrates, RSC advances, 8 (2018) 2109-2115.
[11] M. Kevin, G.Y. Lim, G. Ho, Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors, Green Chemistry, 17 (2015) 1120-1126.
[12] M.J. Kim, S. Alvarez, T. Yan, V. Tadepalli, K.A. Fichthorn, B.J. Wiley, Modulating the growth rate, aspect ratio, and yield of copper nanowires with alkylamines, Chemistry of Materials, 30 (2018) 2809-2818.
[13] K.C. Pradel, K. Sohn, J. Huang, Cross‐flow purification of nanowires, Angewandte Chemie International Edition, 50 (2011) 3412-3416.
[14] X. Xu, K.K. Caswell, E. Tucker, S. Kabisatpathy, K.L. Brodhacker, W.A. Scrivens, Size and shape separation of gold nanoparticles with preparative gel electrophoresis, Journal of Chromatography A, 1167 (2007) 35-41.
[15] C. Kang, S. Yang, M. Tan, C. Wei, Q. Liu, J. Fang, G. Liu, Purification of copper nanowires to prepare flexible transparent conductive films with high performance, ACS Applied Nano Materials, 1 (2018) 3155-3163.
[16] H. Zhang, S. Wang, Y. Tian, J. Wen, C. Hang, Z. Zheng, Y. Huang, S. Ding, C. Wang, High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes, Nano Materials Science, 2 (2020) 164-171.
[17] I. Kim, J. Kim, The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors, Journal of applied physics, 108 (2010) 102807.
[18] K. Woo, Y. Kim, B. Lee, J. Kim, J. Moon, Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films, ACS Applied Materials & Interfaces, 3 (2011) 2377-2382.
[19] J. Liu, H. Ji, S. Wang, M. Li, The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink, Journal of Materials Science: Materials in Electronics, 27 (2016) 13280-13287.
[20] Z. Chen, S. Ye, I.E. Stewart, B.J. Wiley, Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance, ACS nano, 8 (2014) 9673-9679.
[21] H. Zhang, S. Wang, Y. Tian, Y. Liu, J. Wen, Y. Huang, C. Hang, Z. Zheng, C. Wang, Electrodeposition fabrication of Cu@ Ni core shell nanowire network for highly stable transparent conductive films, Chemical Engineering Journal, 390 (2020) 124495.
[22] X. He, R. He, Q. Lan, F. Duan, J. Xiao, M. Song, M. Zhang, Y. Chen, Y. Li, A facile fabrication of silver-coated copper nanowires by galvanic replacement, Journal of Nanomaterials, 2016 (2016).
[23] Z. Jiang, Y. Tian, S. Ding, J. Wen, C. Wang, Facile synthesis of Cu–Ag hybrid nanowires with strong surface-enhanced Raman scattering sensitivity, CrystEngComm, 18 (2016) 1200-1206.
[24] X. Meng, S. Zhao, Z. Zhang, R. Zhang, J. Li, J. Leng, D. Cao, G. Zhang, R. Sun, Nacre-inspired highly stretchable piezoresistive Cu–Ag nanowire/graphene synergistic conductive networks for strain sensors and beyond, Journal of Materials Chemistry C, 7 (2019) 7061-7072.
[25] C.R. Chu, C. Lee, J. Koo, H.M. Lee, Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability, Nano Research, 9 (2016) 2162-2173.
[26] S. Yu, J. Li, L. Zhao, B. Gong, L. Li, Folding-insensitive, flexible transparent conductive electrodes based on copper nanowires, Solar Energy Materials and Solar Cells, 231 (2021) 111323.
[27] H. Zhai, R. Wang, X. Wang, Y. Cheng, L. Shi, J. Sun, Transparent heaters based on highly stable Cu nanowire films, Nano Research, 9 (2016) 3924-3936.
[28] H. Wang, C. Wu, Y. Huang, F. Sun, N. Lin, A.M. Soomro, Z. Zhong, X. Yang, X. Chen, J. Kang, One-pot synthesis of superfine core–shell Cu@ metal nanowires for highly tenacious transparent LED dimmer, ACS Applied Materials & Interfaces, 8 (2016) 28709-28717.
[29] T.-H. Duong, N.-H. Tran, H.-C. Kim, Low cost fabrication of flexible transparent electrodes using copper nanowires, Thin Solid Films, 622 (2017) 17-22.

電子全文 電子全文(網際網路公開日期:20270726)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top