|
[1] H.-G. Im, S.-H. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J.-Y. Lee, I.-D. Kim, B.-S. Bae, Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics, ACS nano, 8 (2014) 10973-10979. [2] A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Advanced Materials, 23 (2011) 4798-4803. [3] S. Ye, A.R. Rathmell, Z. Chen, I.E. Stewart, B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors, Advanced materials, 26 (2014) 6670-6687. [4] Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong, J. Moon, Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics, NPG Asia Materials, 6 (2014) e105-e105. [5] Y. Wang, P. Liu, H. Wang, B. Zeng, J. Wang, F. Chi, Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode, Journal of Materials Science, 54 (2019) 2343-2350. [6] H. Xiang, T. Guo, M. Xu, H. Lu, S. Liu, G. Yu, Ultrathin copper nanowire synthesis with tunable morphology using organic amines for transparent conductors, ACS Applied Nano Materials, 1 (2018) 3754-3759. [7] M. Mohl, P. Pusztai, A. Kukovecz, Z. Konya, J. Kukkola, K. Kordas, R. Vajtai, P.M. Ajayan, Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires, Langmuir, 26 (2010) 16496-16502. [8] Y. Wang, P. Liu, B. Zeng, L. Liu, J. Yang, Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes, Nanoscale research letters, 13 (2018) 1-10. [9] A. Umer, S. Naveed, N. Ramzan, M.S. Rafique, M. Imran, A green method for the synthesis of copper nanoparticles using L-ascorbic acid, Matéria (Rio de janeiro), 19 (2014) 197-203. [10] S. Ding, Y. Tian, J. Jiu, K. Suganuma, Highly conductive and transparent copper nanowire electrodes on surface coated flexible and heat-sensitive substrates, RSC advances, 8 (2018) 2109-2115. [11] M. Kevin, G.Y. Lim, G. Ho, Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors, Green Chemistry, 17 (2015) 1120-1126. [12] M.J. Kim, S. Alvarez, T. Yan, V. Tadepalli, K.A. Fichthorn, B.J. Wiley, Modulating the growth rate, aspect ratio, and yield of copper nanowires with alkylamines, Chemistry of Materials, 30 (2018) 2809-2818. [13] K.C. Pradel, K. Sohn, J. Huang, Cross‐flow purification of nanowires, Angewandte Chemie International Edition, 50 (2011) 3412-3416. [14] X. Xu, K.K. Caswell, E. Tucker, S. Kabisatpathy, K.L. Brodhacker, W.A. Scrivens, Size and shape separation of gold nanoparticles with preparative gel electrophoresis, Journal of Chromatography A, 1167 (2007) 35-41. [15] C. Kang, S. Yang, M. Tan, C. Wei, Q. Liu, J. Fang, G. Liu, Purification of copper nanowires to prepare flexible transparent conductive films with high performance, ACS Applied Nano Materials, 1 (2018) 3155-3163. [16] H. Zhang, S. Wang, Y. Tian, J. Wen, C. Hang, Z. Zheng, Y. Huang, S. Ding, C. Wang, High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes, Nano Materials Science, 2 (2020) 164-171. [17] I. Kim, J. Kim, The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors, Journal of applied physics, 108 (2010) 102807. [18] K. Woo, Y. Kim, B. Lee, J. Kim, J. Moon, Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films, ACS Applied Materials & Interfaces, 3 (2011) 2377-2382. [19] J. Liu, H. Ji, S. Wang, M. Li, The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink, Journal of Materials Science: Materials in Electronics, 27 (2016) 13280-13287. [20] Z. Chen, S. Ye, I.E. Stewart, B.J. Wiley, Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance, ACS nano, 8 (2014) 9673-9679. [21] H. Zhang, S. Wang, Y. Tian, Y. Liu, J. Wen, Y. Huang, C. Hang, Z. Zheng, C. Wang, Electrodeposition fabrication of Cu@ Ni core shell nanowire network for highly stable transparent conductive films, Chemical Engineering Journal, 390 (2020) 124495. [22] X. He, R. He, Q. Lan, F. Duan, J. Xiao, M. Song, M. Zhang, Y. Chen, Y. Li, A facile fabrication of silver-coated copper nanowires by galvanic replacement, Journal of Nanomaterials, 2016 (2016). [23] Z. Jiang, Y. Tian, S. Ding, J. Wen, C. Wang, Facile synthesis of Cu–Ag hybrid nanowires with strong surface-enhanced Raman scattering sensitivity, CrystEngComm, 18 (2016) 1200-1206. [24] X. Meng, S. Zhao, Z. Zhang, R. Zhang, J. Li, J. Leng, D. Cao, G. Zhang, R. Sun, Nacre-inspired highly stretchable piezoresistive Cu–Ag nanowire/graphene synergistic conductive networks for strain sensors and beyond, Journal of Materials Chemistry C, 7 (2019) 7061-7072. [25] C.R. Chu, C. Lee, J. Koo, H.M. Lee, Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability, Nano Research, 9 (2016) 2162-2173. [26] S. Yu, J. Li, L. Zhao, B. Gong, L. Li, Folding-insensitive, flexible transparent conductive electrodes based on copper nanowires, Solar Energy Materials and Solar Cells, 231 (2021) 111323. [27] H. Zhai, R. Wang, X. Wang, Y. Cheng, L. Shi, J. Sun, Transparent heaters based on highly stable Cu nanowire films, Nano Research, 9 (2016) 3924-3936. [28] H. Wang, C. Wu, Y. Huang, F. Sun, N. Lin, A.M. Soomro, Z. Zhong, X. Yang, X. Chen, J. Kang, One-pot synthesis of superfine core–shell Cu@ metal nanowires for highly tenacious transparent LED dimmer, ACS Applied Materials & Interfaces, 8 (2016) 28709-28717. [29] T.-H. Duong, N.-H. Tran, H.-C. Kim, Low cost fabrication of flexible transparent electrodes using copper nanowires, Thin Solid Films, 622 (2017) 17-22.
|