跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/18 23:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江進弦
研究生(外文):CHIANG, CHIN-HSIEN
論文名稱:開發生質型自修復共聚高分子系統應用於電磁干擾屏蔽
論文名稱(外文):Development of Bio-Based Self-Healing Copolymer System for Electromagnetic Interference Shielding
指導教授:李宜桓
指導教授(外文):LEE, YI-HUAN
口試委員:彭珮雯李薇芳程耀毅李宜桓
口試委員(外文):PENG, PEI-WENLEE, WEI-FANGCHENG, YAO-YILEE, YI-HUAN
口試日期:2022-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:88
中文關鍵詞:生質型自修復高分子電磁干擾屏蔽石墨烯奈米碳管
外文關鍵詞:Bio-based materialsSelf-healingElectromagnetic interference shieldingGrapheneCarbon nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,一種生質型具交聯網狀結構之自修復高分子被開發出來,並結合石墨烯/奈米碳管製成複合材料。建構的方式為兩種不同屬性的高分子被合成並經由Diels-Alder反應將兩者結合。首先生質型聚酯多元醇(Priplast 3192)與異氰酸酯(H12MDI)反應,並以糠胺(FA)作為分子鏈的封端劑形成含有呋喃(furan)官能基之聚氨酯(polyurethane, PU)高分子。同時也利用開環聚合(ring-opening polymerization)手法合成具有furan末端基之共聚高分子poly(caprolactone)-co-poly(furfuryl glycidyl ether) (PCLF)。接著藉由具有可作為親二烯體馬來亞醯胺(maleimide)官能基之雙馬來醯亞胺(BMI)作為橋梁,經由Diels-Alder反應將PU及PCLF進行化學鍵結獲得可逆網狀交聯結構。在本系統中,PU鏈段有助於提高機械性而PCLF提供多元官能基提高DA交聯密度,賦予材料系統優異的機械強度。此外,聚酯多元醇(Priplast 3192)與聚己內酯(PCL)分別作為這兩種共聚物之主架構,皆具有再生原料的優點。更重要的是,本實驗利用動態可逆Diels-Alder反應機制,藉由升溫逆DA反應修復受損的部位。考量年來多功能材料的發展趨勢,石墨烯/奈米碳管被進一步的添加於上述成功開發的自修復的材料中,賦予材料系統電磁干擾屏蔽的功能。以現今環保意識抬頭,自修復材料早已是熱門的研究項目,而高科技的快速發展,電磁波屏蔽更是近幾年探討熱點,我們相信本研究將此兩種重要功能結合,有助於在電磁應用拓展更具新穎性的領域。
In this study, a bio-based self-healing polymeric material with a cross-linked network structure was developed and then combined with graphene/carbon nanotubes to form a nanocomposite system. The self-healing polymeric system was constructed in such a way that two polymers with different properties were synthesized and combined via the Diels-Alder mechanism. First, a bio-based polyester polyol (Priplast 3192) was reacted with isocyanate (H12MDI), followed by the introduction of furfurylamine (FA) as the end capping reagent to form a polyurethane (PU) with furan end groups. Meanwhile, poly(caprolactone)-co-poly(furfuryl glycidyl ether) (PCLF), a copolymer with furan end groups, was synthesized by ring-opening polymerization. Subsequently, the synthesized PU and PCLF polymers were chemically bonded via Diels-Alder reaction with bismaleimide (BMI), which acted as a dienophile reagent to react with furan groups of PU and PCLF, forming a cross-linked polymeric system with reversible DA bonding. For the cross-linked system, PU possessed good mechanical properties, and PCLF provided multiple functional groups to increase the DA cross-linking density, which endowed the material system with favorable mechanical strength. In addition, polyester polyol (Priplast 3192) and polycaprolactone (PCL) as the main structure of PU and PCLF both had the advantages of renewable sources. More importantly, based on the dynamic and reversible characteristics of the Diels-Alder reaction, the damaged parts of the material were effectively repaired by heating up to initiate the retro-DA reaction. Considering the development trend of multifunctional materials in recent years, graphene/carbon nanotubes were further added to the above-mentioned successfully developed self-healing material to endow the material system with electromagnetic interference (EMI) shielding function. With the rising awareness of environmental protection, self-healing materials have long been a popular research project, and with the rapid development of high technology, electromagnetic wave shielding has become a hot topic in recent years. We believe that the successful combination of these two key functions in this study will help to expand more novel areas in electromagnetic applications.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 聚氨酯 3
2.1.1 聚氨酯介紹 3
2.1.2 聚氨酯的合成 5
2.1.3 生質型聚氨酯 8
2.2 自修復材料(self-healing material) 10
2.2.1 自修復材料介紹 10
2.2.2 狄耳士-阿爾德(Diels-Alder)反應介紹 15
2.2.3 Diels-Alder可逆交聯自修復高分子材料 16
2.3 聚己內酯(polycaprolactone, PCL) 18
2.3.1 聚己內酯介紹 18
2.3.2 聚己內酯開環聚合機制(ring-opening polymerization, ROP) 19
2.3.3 聚己內酯應用於Diels-Alder反應高分子 21
2.4 石墨烯(graphene) 22
2.5 奈米碳管(carbon nanotube, CNT) 24
2.5.1 奈米碳管簡介 24
2.5.2 奈米碳管發展與應用 27
2.6 電磁干擾(Electromagnetic Interference, EMI)介紹 28
2.7 生物基(生質型)聚合物介紹 32
第三章 實驗 33
3.1 實驗藥品 33
3.2 實驗溶劑 38
3.3 實驗儀器 40
3.4 儀器與檢測方法 43
3.5 己內酯(ε-caprolactone)單體除水純化 51
3.6 合成聚己內酯(polycaprolactone)-co-聚縮水甘油糠醚(poly(furfuryl glycidyl ether))共聚物 (PCLF) 52
3.7 合成聚氨酯(Polyurethane) 53
3.8 製備PU/PCLF/ Graphene/MWCNT生質型自修復奈米複合材料 54
第四章 結果與討論 56
4.1 高分子PCLF與PU合成之鑑定 56
4.1.1 PCLF核磁共振光譜儀(NMR)結構鑑定分析 56
4.1.2 PU核磁共振光譜儀(NMR)結構鑑定分析 58
4.1.3 PCLF與PU凝膠滲透層析儀(GPC)分子量鑑定分析 59
4.2 PUBPCLF自修復複合材料之Diels-Alder分析 60
4.2.1 傅立葉傳換紅外線光譜(FT-IR)分析 60
4.2.2 溶膠-凝膠(Sol-Gel)的熱可逆反應分析 61
4.2.3 偏光光學顯微鏡(POM)分析 62
4.3 PU-B-PCLF自修復奈米複合材料性質分析 65
4.3.1 熱重量分析儀(TGA)分析 65
4.3.2 差示掃描熱分析儀(DSC)分析 67
4.3.3 廣角度X光散射儀(WAXS)分析 69
4.3.4 掃描式電子顯微鏡(SEM)分析 70
4.3.5 PB-C10G5與PB-C15複合材料熱重塑性(Remolding)分析 72
4.3.6 阻抗分析儀(Resistivity Meters)電導度分析 73
4.3.7 向量網路分析儀(VNA)分析 74
4.3.8 拉伸(Tensile)測試分析 78
第五章 結論 80
參考文獻 81
附錄 88
1.Xing, J. Y., Electromagnetic Radiation on Human Health Hazards and Protective Measures in Modern
Society. Advanced Materials Research 2012, 518-523, 1022-1026.
2.Kumar, R.; Choudhary, H. K.; Pawar, S. P.; Bose, S.; Sahoo, B., Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys Chem Chem Phys 2017, 19 (34), 23268-23279.
3.Das, A.; Mahanwar, P., A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research 2020, 3 (3), 93-101.
4.Sharmin, E.; Zafar, F., Polyurethane: An Introduction. In Polyurethane, 2012.
5.Kreye, O.; Mutlu, H.; Meier, M. A. R., Sustainable routes to polyurethane precursors. Green Chemistry 2013, 15 (6).
6.Kemona, A.; Piotrowska, M., Polyurethane Recycling and Disposal: Methods and Prospects. Polymers (Basel) 2020, 12 (8).
7.Akindoyo, J. O.; Beg, M. D. H.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R., Polyurethane types, synthesis and applications – a review. RSC Advances 2016, 6 (115), 114453-114482.
8.Choi, S. M.; Shin, E. J.; Zo, S. M.; Rao, K. M.; Seok, Y. J.; Won, S. Y.; Han, S. S., Revised Manuscript with Corrections: Polyurethane-Based Conductive Composites: From Synthesis to Applications. Int J Mol Sci 2022, 23 (4).
9.Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F., On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 2013, 113 (1), 80-118.
10.Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q., Progress in Study of Non-Isocyanate Polyurethane. Industrial & Engineering Chemistry Research 2011, 50 (11), 6517-6527.
11.Noreen, A.; Zia, K. M.; Zuber, M.; Tabasum, S.; Zahoor, A. F., Bio-based polyurethane: An efficient and environment friendly coating systems: A review. Progress in Organic Coatings 2016, 91, 25-32.
12.Tenorio-Alfonso, A.; Sánchez, M. C.; Franco, J. M., A Review of the Sustainable Approaches in the Production of Bio-based Polyurethanes and Their Applications in the Adhesive Field. Journal of Polymers and the Environment 2020, 28 (3), 749-774.
13.Thakur, V. K.; Kessler, M. R., Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369-383.
14.Bekas, D. G.; Tsirka, K.; Baltzis, D.; Paipetis, A. S., Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering 2016, 87, 92-119.
15.Zhu, M.; Liu, J.; Gan, L.; Long, M., Research progress in bio-based self-healing materials. European Polymer Journal 2020, 129.
16.Yoshie, N.; Yoshida, S.; Matsuoka, K., Self-healing of biobased furan polymers: Recovery of high mechanical strength by mild heating. Polymer Degradation and Stability 2019, 161, 13-18.
17.Wu, D. Y.; Meure, S.; Solomon, D., Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science 2008, 33 (5), 479-522.
18.Yang, Y.; Urban, M. W., Self-healing polymeric materials. Chem Soc Rev 2013, 42 (17), 7446-67.
19.Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S., Self-healing materials. Adv Mater 2010, 22 (47), 5424-30.
20.Banea, M. D.; da Silva, L. F. M.; Campilho, R. D. S. G.; Sato, C., Smart Adhesive Joints: An Overview of Recent Developments. The Journal of Adhesion 2013, 90 (1), 16-40.
21.Guimard, N. K.; Oehlenschlaeger, K. K.; Zhou, J.; Hilf, S.; Schmidt, F. G.; Barner-Kowollik, C., Current Trends in the Field of Self-Healing Materials. Macromolecular Chemistry and Physics 2012, 213 (2), 131-143.
22.Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R., Self-Healing Polymers and Composites. Annual Review of Materials Research 2010, 40 (1), 179-211.
23.Saeed, M.-U.; Chen, Z.; Li, B., Manufacturing strategies for microvascular polymeric composites: A review. Composites Part A: Applied Science and Manufacturing 2015, 78, 327-340.
24.Olugebefola, S. C.; Aragón, A. M.; Hansen, C. J.; Hamilton, A. R.; Kozola, B. D.; Wu, W.; Geubelle, P. H.; Lewis, J. A.; Sottos, N. R.; White, S. R., Polymer Microvascular Network Composites. Journal of Composite Materials 2010, 44 (22), 2587-2603.
25.Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R., Self-healing materials with microvascular networks. Nat Mater 2007, 6 (8), 581-5.
26.Lin, Y.; Li, G., An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels. J Mater Chem B 2014, 2 (39), 6878-6885.
27.Xie, Z.; Hu, B. L.; Li, R. W.; Zhang, Q., Hydrogen Bonding in Self-Healing Elastomers. ACS Omega 2021, 6 (14), 9319-9333.
28.Wu, X.; Li, J.; Li, G.; Ling, L.; Zhang, G.; Sun, R.; Wong, C.-P., Heat-triggered poly(siloxane-urethane)s based on disulfide bonds for self-healing application. Journal of Applied Polymer Science 2018, 135 (31).
29.Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolaÿ, R.; Zhang, Y.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K., Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules 2011, 45 (1), 142-149.
30.Yang, Y.; Ding, X.; Urban, M. W., Chemical and physical aspects of self-healing materials. Progress in Polymer Science 2015, 49-50, 34-59.
31.Engel, T.; Kickelbick, G., Furan‐Modified Spherosilicates as Building Blocks for Self‐Healing Materials. European Journal of Inorganic Chemistry 2014, 2015 (7), 1226-1232.
32.Wang, S.; Urban, M. W., Self-healing polymers. Nature Reviews Materials 2020, 5 (8), 562-583.
33.Li, C. H.; Zuo, J. L., Self-Healing Polymers Based on Coordination Bonds. Adv Mater 2020, 32 (27), e1903762.
34.Cao, L.; Gong, Z.; Liu, C.; Fan, J.; Chen, Y., Design and fabrication of mechanically strong and self-healing rubbers via metal-ligand coordination bonds as dynamic crosslinks. Composites Science and Technology 2021, 207.
35.Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G., The Diels--Alder reaction in total synthesis. Angew Chem Int Ed Engl 2002, 41 (10), 1668-98.
36.Sauer, J.; Sustmann, R. J. A. C. I. E. i. E., Mechanistic aspects of Diels‐Alder reactions: a critical survey. 1980, 19 (10), 779-807.
37.Zargar, N.; Khan, K. J. O. C. I. J., The Diels Alder Reaction-FMO and Stepwise Radical Ion Cycloaddition Pathways. 2018, 14 (3), 131.
38.Huang, G.; Kouklovsky, C.; de la Torre, A., Inverse-Electron-Demand Diels-Alder Reactions of 2-Pyrones: Bridged Lactones and Beyond. Chemistry 2021, 27 (15), 4760-4788.
39.Diels, O.; Alder, K. J. J. L. A. d. C., Synthesen in der hydroaromatischen Reihe. 1928, 460 (1), 98-122.
40.Xu, G.; Bai, X.; Dang, Q., Aromatic Heterocycles as Productive Dienophiles in the Inverse Electron-Demand Diels-Alder Reactions of 1,3,5-Triazines. Acc Chem Res 2020, 53 (4), 773-781.
41.Ajaz, A.; Bradley, A. Z.; Burrell, R. C.; Li, W. H.; Daoust, K. J.; Bovee, L. B.; DiRico, K. J.; Johnson, R. P., Concerted vs stepwise mechanisms in dehydro-Diels-Alder reactions. J Org Chem 2011, 76 (22), 9320-8.
42.Martin, J. G.; Hill, R. K. J. C. R., Stereochemistry of the Diels-Alder Reaction. 1961, 61 (6), 537-562.
43.Froidevaux, V.; Borne, M.; Laborbe, E.; Auvergne, R.; Gandini, A.; Boutevin, B., Study of the Diels–Alder and retro-Diels–Alder reaction between furan derivatives and maleimide for the creation of new materials. RSC Advances 2015, 5 (47), 37742-37754.
44.Turkenburg, D. H.; Durant, Y.; Fischer, H. R., Bio-based self-healing coatings based on thermo-reversible Diels-Alder reaction. Progress in Organic Coatings 2017, 111, 38-46.
45.Tasdelen, M. A., Diels–Alder “click” reactions: recent applications in polymer and material science. Polymer Chemistry 2011, 2 (10).
46.Liu, Y.-L.; Chuo, T.-W., Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polymer Chemistry 2013, 4 (7).
47.Platonova, E.; Chechenov, I.; Pavlov, A.; Solodilov, V.; Afanasyev, E.; Shapagin, A.; Polezhaev, A., Thermally Remendable Polyurethane Network Cross-Linked via Reversible Diels-Alder Reaction. Polymers (Basel) 2021, 13 (12).
48.Mohamed, R. M.; Yusoh, K., A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research 2015, 1134, 249-255.
49.Suzuki, M.; Tachibana, Y.; Kasuya, K.-i., Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polymer Journal 2020, 53 (1), 47-66.
50.Labet, M.; Thielemans, W., Synthesis of polycaprolactone: a review. Chem Soc Rev 2009, 38 (12), 3484-504.
51.Guarino, V.; Gentile, G.; Sorrentino, L.; Ambrosio, L., Polycaprolactone: Synthesis, Properties, and Applications. In Encyclopedia of Polymer Science and Technology, 2017; pp 1-36.
52.Hoskins, J. N.; Grayson, S. M., Synthesis and Degradation Behavior of Cyclic Poly(ε-caprolactone). Macromolecules 2009, 42 (17), 6406-6413.
53.Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A., Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 2004, 278 (1), 1-23.
54.Natta, F. J. v.; Hill, J. W.; Carothers, W. H. J. J. o. t. A. C. S., Studies of polymerization and ring formation. XXIII. 1 ε-Caprolactone and its polymers. 1934, 56 (2), 455-457.
55.Mandal, P.; Shunmugam, R., Polycaprolactone: a biodegradable polymer with its application in the field of self-assembly study. Journal of Macromolecular Science, Part A 2020, 58 (2), 111-129.
56.Mallek, H.; Jegat, C.; Mignard, N.; Abid, M.; Abid, S.; Taha, M., Reversibly crosslinked self-healing PCL-based networks. Journal of Applied Polymer Science 2013, 129 (3), 954-964.
57.Yang, L.; Lu, X.; Wang, Z.; Xia, H., Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function. Polymer Chemistry 2018, 9 (16), 2166-2172.
58.Mallek, H.; Jegat, C.; Mignard, N.; Taha, M.; Abid, M.; Abid, S., One-step Synthesis of PCL-Urethane Networks using a Crosslinking/de-crosslinking Agent. Journal of Macromolecular Science, Part A 2013, 50 (7), 728-737.
59.Defize, T.; Riva, R.; Raquez, J. M.; Dubois, P.; Jerome, C.; Alexandre, M., Thermoreversibly crosslinked poly(epsilon-caprolactone) as recyclable shape-memory polymer network. Macromol Rapid Commun 2011, 32 (16), 1264-9.
60.Whitener, K. E.; Sheehan, P. E., Graphene synthesis. Diamond and Related Materials 2014, 46, 25-34.
61.Yang, G.; Li, L.; Lee, W. B.; Ng, M. C., Structure of graphene and its disorders: a review. Sci Technol Adv Mater 2018, 19 (1), 613-648.
62.Wang, H.; Maiyalagan, T.; Wang, X., Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis 2012, 2 (5), 781-794.
63.Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A., Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices 2020, 5 (1), 10-29.
64.Geim, A. K.; Novoselov, K. S., The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals, World Scientific: 2010; pp 11-19.
65.Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene, the new nanocarbon. Journal of Materials Chemistry 2009, 19 (17).
66.Zhao, S.; Zhao, Z.; Yang, Z.; Ke, L.; Kitipornchai, S.; Yang, J., Functionally graded graphene reinforced composite structures: A review. Engineering Structures 2020, 210.
67.Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K., Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 2008, 100 (1), 016602.
68.Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008, 146 (9-10), 351-355.
69.Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. J. s., Measurement of the elastic properties and intrinsic strength of monolayer graphene. 2008, 321 (5887), 385-388.
70.Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. J. N. l., Superior thermal conductivity of single-layer graphene. 2008, 8 (3), 902-907.
71.Cao, M.-S.; Wang, X.-X.; Cao, W.-Q.; Yuan, J., Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C 2015, 3 (26), 6589-6599.
72.Li, G.; Xiao, P.; Hou, S.; Huang, Y., Rapid and efficient polymer/graphene based multichannel self-healing material via Diels-Alder reaction. Carbon 2019, 147, 398-407.
73.Iijima, S. J. n., Helical microtubules of graphitic carbon. 1991, 354 (6348), 56-58.
74.Iijima, S.; Ichihashi, T. J. n., Single-shell carbon nanotubes of 1-nm diameter. 1993, 363 (6430), 603-605.
75.Dai, H. J. A. o. c. r., Carbon nanotubes: synthesis, integration, and properties. 2002, 35 (12), 1035-1044.
76.Bokobza, L., Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007, 48 (17), 4907-4920.
77.Baddour, C. E.; Briens, C. J. I. j. o. c. r. e., Carbon nanotube synthesis: a review. 2005, 3 (1).
78.Popov, V., Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports 2004, 43 (3), 61-102.
79.Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. J. N. r. l., Carbon nanotubes: properties, synthesis, purification, and medical applications. 2014, 9 (1), 1-13.
80.Wang, C.; Takei, K.; Takahashi, T.; Javey, A., Carbon nanotube electronics--moving forward. Chem Soc Rev 2013, 42 (7), 2592-609.
81.Harris, P. J. J. I. m. r., Carbon nanotube composites. 2004, 49 (1), 31-43.
82.Gupta, N.; Gupta, S. M.; Sharma, S. K., Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters 2019, 29 (5), 419-447.
83.Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S., Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49 (1), 198-205.
84.Schnorr, J. M.; Swager, T. M., Emerging Applications of Carbon Nanotubes. Chemistry of Materials 2010, 23 (3), 646-657.
85.Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T. M., Carbon Nanotube Chemical Sensors. Chem Rev 2019, 119 (1), 599-663.
86.Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A. A.; Abdel-Daiem, A., Different Technical Applications of Carbon Nanotubes. Nanoscale Res Lett 2015, 10 (1), 358.
87.De Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. J. s., Carbon nanotubes: present and future commercial applications. 2013, 339 (6119), 535-539.
88.Ren, F.; Li, Z.; Xu, L.; Sun, Z.; Ren, P.; Yan, D.; Li, Z., Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Composites Part B: Engineering 2018, 155, 405-413.
89.Yao, Y.; Jin, S.; Zou, H.; Li, L.; Ma, X.; Lv, G.; Gao, F.; Lv, X.; Shu, Q., Polymer-based lightweight materials for electromagnetic interference shielding: a review. Journal of Materials Science 2021, 56 (11), 6549-6580.
90.Chung, D. J. c., Electromagnetic interference shielding effectiveness of carbon materials. 2001, 39 (2), 279-285.
91.Ji, H.; Zhao, R.; Zhang, N.; Jin, C.; Lu, X.; Wang, C., Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Materials 2018, 10 (8), 749-760.
92.Geetha, S.; Satheesh Kumar, K. K.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C., EMI shielding: Methods and materials-A review. Journal of Applied Polymer Science 2009, 112 (4), 2073-2086.
93.Wang, H.; Li, S.; Liu, M.; Li, J.; Zhou, X., Review on Shielding Mechanism and Structural Design of Electromagnetic Interference Shielding Composites. Macromolecular Materials and Engineering 2021, 306 (6).
94.Thomassin, J.-M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports 2013, 74 (7), 211-232.
95.Peng, M.; Qin, F., Clarification of basic concepts for electromagnetic interference shielding effectiveness. Journal of Applied Physics 2021, 130 (22).
96.Lackner, M., Bioplastics. In Kirk-Othmer Encyclopedia of Chemical Technology, 2015; pp 1-41.
97.Bioplastics, E., European bioplastics. línea] Available at: https://www.european-bioplastics.org/bioplastics/.
98.Iwata, T., Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Engl 2015, 54 (11), 3210-5.
99.Tokiwa, Y.; Calabia, B. P.; Ugwu, C. U.; Aiba, S., Biodegradability of plastics. Int J Mol Sci 2009, 10 (9), 3722-42.
100.Hottle, T. A.; Bilec, M. M.; Landis, A. E., Sustainability assessments of bio-based polymers. Polymer Degradation and Stability 2013, 98 (9), 1898-1907.
電子全文 電子全文(網際網路公開日期:20270818)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊