|
1.Xing, J. Y., Electromagnetic Radiation on Human Health Hazards and Protective Measures in Modern Society. Advanced Materials Research 2012, 518-523, 1022-1026. 2.Kumar, R.; Choudhary, H. K.; Pawar, S. P.; Bose, S.; Sahoo, B., Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys Chem Chem Phys 2017, 19 (34), 23268-23279. 3.Das, A.; Mahanwar, P., A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research 2020, 3 (3), 93-101. 4.Sharmin, E.; Zafar, F., Polyurethane: An Introduction. In Polyurethane, 2012. 5.Kreye, O.; Mutlu, H.; Meier, M. A. R., Sustainable routes to polyurethane precursors. Green Chemistry 2013, 15 (6). 6.Kemona, A.; Piotrowska, M., Polyurethane Recycling and Disposal: Methods and Prospects. Polymers (Basel) 2020, 12 (8). 7.Akindoyo, J. O.; Beg, M. D. H.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R., Polyurethane types, synthesis and applications – a review. RSC Advances 2016, 6 (115), 114453-114482. 8.Choi, S. M.; Shin, E. J.; Zo, S. M.; Rao, K. M.; Seok, Y. J.; Won, S. Y.; Han, S. S., Revised Manuscript with Corrections: Polyurethane-Based Conductive Composites: From Synthesis to Applications. Int J Mol Sci 2022, 23 (4). 9.Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F., On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 2013, 113 (1), 80-118. 10.Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q., Progress in Study of Non-Isocyanate Polyurethane. Industrial & Engineering Chemistry Research 2011, 50 (11), 6517-6527. 11.Noreen, A.; Zia, K. M.; Zuber, M.; Tabasum, S.; Zahoor, A. F., Bio-based polyurethane: An efficient and environment friendly coating systems: A review. Progress in Organic Coatings 2016, 91, 25-32. 12.Tenorio-Alfonso, A.; Sánchez, M. C.; Franco, J. M., A Review of the Sustainable Approaches in the Production of Bio-based Polyurethanes and Their Applications in the Adhesive Field. Journal of Polymers and the Environment 2020, 28 (3), 749-774. 13.Thakur, V. K.; Kessler, M. R., Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369-383. 14.Bekas, D. G.; Tsirka, K.; Baltzis, D.; Paipetis, A. S., Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering 2016, 87, 92-119. 15.Zhu, M.; Liu, J.; Gan, L.; Long, M., Research progress in bio-based self-healing materials. European Polymer Journal 2020, 129. 16.Yoshie, N.; Yoshida, S.; Matsuoka, K., Self-healing of biobased furan polymers: Recovery of high mechanical strength by mild heating. Polymer Degradation and Stability 2019, 161, 13-18. 17.Wu, D. Y.; Meure, S.; Solomon, D., Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science 2008, 33 (5), 479-522. 18.Yang, Y.; Urban, M. W., Self-healing polymeric materials. Chem Soc Rev 2013, 42 (17), 7446-67. 19.Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S., Self-healing materials. Adv Mater 2010, 22 (47), 5424-30. 20.Banea, M. D.; da Silva, L. F. M.; Campilho, R. D. S. G.; Sato, C., Smart Adhesive Joints: An Overview of Recent Developments. The Journal of Adhesion 2013, 90 (1), 16-40. 21.Guimard, N. K.; Oehlenschlaeger, K. K.; Zhou, J.; Hilf, S.; Schmidt, F. G.; Barner-Kowollik, C., Current Trends in the Field of Self-Healing Materials. Macromolecular Chemistry and Physics 2012, 213 (2), 131-143. 22.Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R., Self-Healing Polymers and Composites. Annual Review of Materials Research 2010, 40 (1), 179-211. 23.Saeed, M.-U.; Chen, Z.; Li, B., Manufacturing strategies for microvascular polymeric composites: A review. Composites Part A: Applied Science and Manufacturing 2015, 78, 327-340. 24.Olugebefola, S. C.; Aragón, A. M.; Hansen, C. J.; Hamilton, A. R.; Kozola, B. D.; Wu, W.; Geubelle, P. H.; Lewis, J. A.; Sottos, N. R.; White, S. R., Polymer Microvascular Network Composites. Journal of Composite Materials 2010, 44 (22), 2587-2603. 25.Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R., Self-healing materials with microvascular networks. Nat Mater 2007, 6 (8), 581-5. 26.Lin, Y.; Li, G., An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels. J Mater Chem B 2014, 2 (39), 6878-6885. 27.Xie, Z.; Hu, B. L.; Li, R. W.; Zhang, Q., Hydrogen Bonding in Self-Healing Elastomers. ACS Omega 2021, 6 (14), 9319-9333. 28.Wu, X.; Li, J.; Li, G.; Ling, L.; Zhang, G.; Sun, R.; Wong, C.-P., Heat-triggered poly(siloxane-urethane)s based on disulfide bonds for self-healing application. Journal of Applied Polymer Science 2018, 135 (31). 29.Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolaÿ, R.; Zhang, Y.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K., Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules 2011, 45 (1), 142-149. 30.Yang, Y.; Ding, X.; Urban, M. W., Chemical and physical aspects of self-healing materials. Progress in Polymer Science 2015, 49-50, 34-59. 31.Engel, T.; Kickelbick, G., Furan‐Modified Spherosilicates as Building Blocks for Self‐Healing Materials. European Journal of Inorganic Chemistry 2014, 2015 (7), 1226-1232. 32.Wang, S.; Urban, M. W., Self-healing polymers. Nature Reviews Materials 2020, 5 (8), 562-583. 33.Li, C. H.; Zuo, J. L., Self-Healing Polymers Based on Coordination Bonds. Adv Mater 2020, 32 (27), e1903762. 34.Cao, L.; Gong, Z.; Liu, C.; Fan, J.; Chen, Y., Design and fabrication of mechanically strong and self-healing rubbers via metal-ligand coordination bonds as dynamic crosslinks. Composites Science and Technology 2021, 207. 35.Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G., The Diels--Alder reaction in total synthesis. Angew Chem Int Ed Engl 2002, 41 (10), 1668-98. 36.Sauer, J.; Sustmann, R. J. A. C. I. E. i. E., Mechanistic aspects of Diels‐Alder reactions: a critical survey. 1980, 19 (10), 779-807. 37.Zargar, N.; Khan, K. J. O. C. I. J., The Diels Alder Reaction-FMO and Stepwise Radical Ion Cycloaddition Pathways. 2018, 14 (3), 131. 38.Huang, G.; Kouklovsky, C.; de la Torre, A., Inverse-Electron-Demand Diels-Alder Reactions of 2-Pyrones: Bridged Lactones and Beyond. Chemistry 2021, 27 (15), 4760-4788. 39.Diels, O.; Alder, K. J. J. L. A. d. C., Synthesen in der hydroaromatischen Reihe. 1928, 460 (1), 98-122. 40.Xu, G.; Bai, X.; Dang, Q., Aromatic Heterocycles as Productive Dienophiles in the Inverse Electron-Demand Diels-Alder Reactions of 1,3,5-Triazines. Acc Chem Res 2020, 53 (4), 773-781. 41.Ajaz, A.; Bradley, A. Z.; Burrell, R. C.; Li, W. H.; Daoust, K. J.; Bovee, L. B.; DiRico, K. J.; Johnson, R. P., Concerted vs stepwise mechanisms in dehydro-Diels-Alder reactions. J Org Chem 2011, 76 (22), 9320-8. 42.Martin, J. G.; Hill, R. K. J. C. R., Stereochemistry of the Diels-Alder Reaction. 1961, 61 (6), 537-562. 43.Froidevaux, V.; Borne, M.; Laborbe, E.; Auvergne, R.; Gandini, A.; Boutevin, B., Study of the Diels–Alder and retro-Diels–Alder reaction between furan derivatives and maleimide for the creation of new materials. RSC Advances 2015, 5 (47), 37742-37754. 44.Turkenburg, D. H.; Durant, Y.; Fischer, H. R., Bio-based self-healing coatings based on thermo-reversible Diels-Alder reaction. Progress in Organic Coatings 2017, 111, 38-46. 45.Tasdelen, M. A., Diels–Alder “click” reactions: recent applications in polymer and material science. Polymer Chemistry 2011, 2 (10). 46.Liu, Y.-L.; Chuo, T.-W., Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polymer Chemistry 2013, 4 (7). 47.Platonova, E.; Chechenov, I.; Pavlov, A.; Solodilov, V.; Afanasyev, E.; Shapagin, A.; Polezhaev, A., Thermally Remendable Polyurethane Network Cross-Linked via Reversible Diels-Alder Reaction. Polymers (Basel) 2021, 13 (12). 48.Mohamed, R. M.; Yusoh, K., A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research 2015, 1134, 249-255. 49.Suzuki, M.; Tachibana, Y.; Kasuya, K.-i., Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polymer Journal 2020, 53 (1), 47-66. 50.Labet, M.; Thielemans, W., Synthesis of polycaprolactone: a review. Chem Soc Rev 2009, 38 (12), 3484-504. 51.Guarino, V.; Gentile, G.; Sorrentino, L.; Ambrosio, L., Polycaprolactone: Synthesis, Properties, and Applications. In Encyclopedia of Polymer Science and Technology, 2017; pp 1-36. 52.Hoskins, J. N.; Grayson, S. M., Synthesis and Degradation Behavior of Cyclic Poly(ε-caprolactone). Macromolecules 2009, 42 (17), 6406-6413. 53.Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A., Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 2004, 278 (1), 1-23. 54.Natta, F. J. v.; Hill, J. W.; Carothers, W. H. J. J. o. t. A. C. S., Studies of polymerization and ring formation. XXIII. 1 ε-Caprolactone and its polymers. 1934, 56 (2), 455-457. 55.Mandal, P.; Shunmugam, R., Polycaprolactone: a biodegradable polymer with its application in the field of self-assembly study. Journal of Macromolecular Science, Part A 2020, 58 (2), 111-129. 56.Mallek, H.; Jegat, C.; Mignard, N.; Abid, M.; Abid, S.; Taha, M., Reversibly crosslinked self-healing PCL-based networks. Journal of Applied Polymer Science 2013, 129 (3), 954-964. 57.Yang, L.; Lu, X.; Wang, Z.; Xia, H., Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function. Polymer Chemistry 2018, 9 (16), 2166-2172. 58.Mallek, H.; Jegat, C.; Mignard, N.; Taha, M.; Abid, M.; Abid, S., One-step Synthesis of PCL-Urethane Networks using a Crosslinking/de-crosslinking Agent. Journal of Macromolecular Science, Part A 2013, 50 (7), 728-737. 59.Defize, T.; Riva, R.; Raquez, J. M.; Dubois, P.; Jerome, C.; Alexandre, M., Thermoreversibly crosslinked poly(epsilon-caprolactone) as recyclable shape-memory polymer network. Macromol Rapid Commun 2011, 32 (16), 1264-9. 60.Whitener, K. E.; Sheehan, P. E., Graphene synthesis. Diamond and Related Materials 2014, 46, 25-34. 61.Yang, G.; Li, L.; Lee, W. B.; Ng, M. C., Structure of graphene and its disorders: a review. Sci Technol Adv Mater 2018, 19 (1), 613-648. 62.Wang, H.; Maiyalagan, T.; Wang, X., Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis 2012, 2 (5), 781-794. 63.Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A., Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices 2020, 5 (1), 10-29. 64.Geim, A. K.; Novoselov, K. S., The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals, World Scientific: 2010; pp 11-19. 65.Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene, the new nanocarbon. Journal of Materials Chemistry 2009, 19 (17). 66.Zhao, S.; Zhao, Z.; Yang, Z.; Ke, L.; Kitipornchai, S.; Yang, J., Functionally graded graphene reinforced composite structures: A review. Engineering Structures 2020, 210. 67.Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K., Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 2008, 100 (1), 016602. 68.Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008, 146 (9-10), 351-355. 69.Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. J. s., Measurement of the elastic properties and intrinsic strength of monolayer graphene. 2008, 321 (5887), 385-388. 70.Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. J. N. l., Superior thermal conductivity of single-layer graphene. 2008, 8 (3), 902-907. 71.Cao, M.-S.; Wang, X.-X.; Cao, W.-Q.; Yuan, J., Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C 2015, 3 (26), 6589-6599. 72.Li, G.; Xiao, P.; Hou, S.; Huang, Y., Rapid and efficient polymer/graphene based multichannel self-healing material via Diels-Alder reaction. Carbon 2019, 147, 398-407. 73.Iijima, S. J. n., Helical microtubules of graphitic carbon. 1991, 354 (6348), 56-58. 74.Iijima, S.; Ichihashi, T. J. n., Single-shell carbon nanotubes of 1-nm diameter. 1993, 363 (6430), 603-605. 75.Dai, H. J. A. o. c. r., Carbon nanotubes: synthesis, integration, and properties. 2002, 35 (12), 1035-1044. 76.Bokobza, L., Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007, 48 (17), 4907-4920. 77.Baddour, C. E.; Briens, C. J. I. j. o. c. r. e., Carbon nanotube synthesis: a review. 2005, 3 (1). 78.Popov, V., Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports 2004, 43 (3), 61-102. 79.Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. J. N. r. l., Carbon nanotubes: properties, synthesis, purification, and medical applications. 2014, 9 (1), 1-13. 80.Wang, C.; Takei, K.; Takahashi, T.; Javey, A., Carbon nanotube electronics--moving forward. Chem Soc Rev 2013, 42 (7), 2592-609. 81.Harris, P. J. J. I. m. r., Carbon nanotube composites. 2004, 49 (1), 31-43. 82.Gupta, N.; Gupta, S. M.; Sharma, S. K., Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters 2019, 29 (5), 419-447. 83.Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S., Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49 (1), 198-205. 84.Schnorr, J. M.; Swager, T. M., Emerging Applications of Carbon Nanotubes. Chemistry of Materials 2010, 23 (3), 646-657. 85.Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T. M., Carbon Nanotube Chemical Sensors. Chem Rev 2019, 119 (1), 599-663. 86.Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A. A.; Abdel-Daiem, A., Different Technical Applications of Carbon Nanotubes. Nanoscale Res Lett 2015, 10 (1), 358. 87.De Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. J. s., Carbon nanotubes: present and future commercial applications. 2013, 339 (6119), 535-539. 88.Ren, F.; Li, Z.; Xu, L.; Sun, Z.; Ren, P.; Yan, D.; Li, Z., Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Composites Part B: Engineering 2018, 155, 405-413. 89.Yao, Y.; Jin, S.; Zou, H.; Li, L.; Ma, X.; Lv, G.; Gao, F.; Lv, X.; Shu, Q., Polymer-based lightweight materials for electromagnetic interference shielding: a review. Journal of Materials Science 2021, 56 (11), 6549-6580. 90.Chung, D. J. c., Electromagnetic interference shielding effectiveness of carbon materials. 2001, 39 (2), 279-285. 91.Ji, H.; Zhao, R.; Zhang, N.; Jin, C.; Lu, X.; Wang, C., Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Materials 2018, 10 (8), 749-760. 92.Geetha, S.; Satheesh Kumar, K. K.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C., EMI shielding: Methods and materials-A review. Journal of Applied Polymer Science 2009, 112 (4), 2073-2086. 93.Wang, H.; Li, S.; Liu, M.; Li, J.; Zhou, X., Review on Shielding Mechanism and Structural Design of Electromagnetic Interference Shielding Composites. Macromolecular Materials and Engineering 2021, 306 (6). 94.Thomassin, J.-M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports 2013, 74 (7), 211-232. 95.Peng, M.; Qin, F., Clarification of basic concepts for electromagnetic interference shielding effectiveness. Journal of Applied Physics 2021, 130 (22). 96.Lackner, M., Bioplastics. In Kirk-Othmer Encyclopedia of Chemical Technology, 2015; pp 1-41. 97.Bioplastics, E., European bioplastics. línea] Available at: https://www.european-bioplastics.org/bioplastics/. 98.Iwata, T., Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Engl 2015, 54 (11), 3210-5. 99.Tokiwa, Y.; Calabia, B. P.; Ugwu, C. U.; Aiba, S., Biodegradability of plastics. Int J Mol Sci 2009, 10 (9), 3722-42. 100.Hottle, T. A.; Bilec, M. M.; Landis, A. E., Sustainability assessments of bio-based polymers. Polymer Degradation and Stability 2013, 98 (9), 1898-1907.
|