跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林書篁
研究生(外文):LIN, SHU-HUANG
論文名稱:應用於低軌道衛星之光固化氧化鋁菲涅爾透鏡寬頻雙極化韋瓦第天線
論文名稱(外文):Broadband, High-gain, Dual-polarized Vivaldi Antenna with Fresnel Lens for Low-orbit Satellites
指導教授:孫卓勳孫卓勳引用關係陳冠宇陳冠宇引用關係
指導教授(外文):SUN, JWO-SHIUNCHEN, GUAN-YU
口試委員:孫卓勳陳冠宇楊昌正鄭兆凱
口試委員(外文):SUN, JWO-SHIUNCHEN, GUAN-YUYANG, CHANG-ZHENGZHENG, ZHAO-KAI
口試日期:2022-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:66
中文關鍵詞:菲涅爾透鏡韋瓦第天線寬頻枝幹耦合器3D 列印光固化氧化鋁
外文關鍵詞:Fresnel lensVivaldi antennabroadband branch couplerStereo Lithography AppearanceAluminium oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一套結合菲涅爾透鏡、圓極化韋瓦第天線的寬頻基地台天線。天線的頻段為10.7 GHz ~ 20.2 GHz,涵蓋了低軌道衛星頻段,同時也涵蓋了Ku-band,在衛星天線極具競爭力。並設計了寬頻枝幹耦合器調整頻段下左右圓極化,搭配雙極化天線即可實現低軌道衛星之基地台。本論文針對透鏡的設計流程也有一定的研究,利用熱穩固光固化的製程技術,實現成本低廉且實現容易的透鏡。改變不同材料也可以應用在不同使用情境。寬頻枝幹耦合器的能實現在頻段內達到插入損耗在6 dB以下的表現,相位也有85.1度到91.9度的表現。天線模擬結果能在10 GHz ~ 20.2 GHz下均低於 -10 dB,頻段下之平均增益為11.7 dBi,加上透鏡後能有6 dB的增益提升,同時也能夠維持其圓極化的特性。在透鏡上亦做了不同距離下透鏡之反射係數的分析,針對不同距離透鏡焦距分析對於反射係數級輻射效率之影響。以最佳化其增益。除了天線設計之外,由於3D列印在形狀塑造上的多變性,搭配其不同材料的列印技術,在未來RF領域的發展空間大,本論文也做了許多文獻及市場分析。除了許多相關的韋瓦第天線分析外,也分析了市面上之3D列印材料的介電特性。

This thesis proposed a kind of broadband antenna which used on base station. The antenna combined with Fresnel lenses and circularly polarized Vivaldi antennas. The frequency band of the antenna is 10.7 GHz ~ 20.2 GHz that covers the low-orbit satellite frequency band and the Ku-band, and that makes this set becomes more competitive in the field of satellite antennas. A broadband branch-line coupler is designed to adjust the left and right circular polarization in the frequency band, and the base station of the low-orbit satellite can be realized with a dual-polarized antenna.In this thesis, the process of the lens had been investigated at a certain level. To achieve the goal of manufacture a low-cost and easy-to-implement lens, by using the technique of thermally stabilized light curing. Varying different materials can also be applied in different usage scenarios. The broadband branch-line coupler can achieve the performance of insertion loss below 6 dB in the frequency band, and the phase difference also has a performance of 85.1° degrees to 91.9°. The simulated result of S11 is lower than -10 dB from 10 GHz to 20.2 GHz, and the average gain in the frequency band is 11.7 dBi. After adding the lens, the gain can be increased by 6 dB, while maintaining its circular polarization characteristics. The reflection coefficient of the lens at different distances is also analyzed on the lens, and the influence of the focal length of the lens on the reflection coefficient level radiation efficiency is analyzed. to optimize its gain.In addition to antenna design, due to the variability of 3D printing in shape shaping and its printing technology with different materials, there is a lot of development in the future of RF region. This paper also made a lot of literature and market analysis. In addition to many relevant Vivaldi antenna analyses, the dielectric properties of commercially available 3D printing materials were also analyzed.

摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
1. 第一章 緒論 1
1.1. 研究背景 1
1.2. 研究動機與相關文獻回顧 3
1.2.1 研究動機 3
1.2.2 韋瓦第天線文獻回顧 6
1.2.3 透鏡天線之文獻回顧 10
1.3. 論文大綱 13
2. 第二章 寬頻枝幹耦合器饋電網路設計 14
2.1單頻枝幹耦合器原理 14
2.2寬頻枝幹耦合器設計 23
3. 第三章 介質量測與菲涅爾透鏡分析 27
3.1 氧化鋁3D列印製程 27
3.2 介電常數量測法 31
3.3 透鏡之相位模擬分析 33
4. 第四章 雙極化菲涅爾韋瓦第天線設計 37
4.1 雙極化韋瓦第天線參數分析 37
4.2 雙極化韋瓦第天線模擬分析 44
4.3 介質透鏡之增益提升模擬分析 48
5. 第五章 結論 59
5.1 論文總結 59
5.2 未來研究方向 60
參考文獻 63


[1] A. Kiyani, Nasimuddin, and K. P. Esselle, "A Wideband Circularly Polarized Dielectric Resonator Antenna over A Metasurface," in 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 8-13 July 2018 2018, pp. 2085-2086.
[2]M. Zou, J. Pan, and Z. Nie, "A Wideband Circularly Polarized Rectangular Dielectric Resonator Antenna Excited by an Archimedean Spiral Slot," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 446-449, 2015.
[3]Z. Hu, S. Wang, Z. Shen, and W. Wu, "Broadband Polarization-Reconfigurable Water Spiral Antenna of Low Profile," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1377-1380, 2017.
[4]K. Ding, C. Gao, Y. Wu, D. Qu, and B. Zhang, "A Broadband Circularly Polarized Printed Monopole Antenna With Parasitic Strips," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2509-2512, 2017.
[5]D. Yang, S. Liu, and D. Geng, "A Miniaturized Ultra-Wideband Vivaldi Antenna With Low Cross Polarization," IEEE Access, vol. 5, pp. 23352-23357, 2017.
[6]M.-A. Boujemaa, R. Herzi, F. Choubani, and A. Gharsallah, "UWB Antipodal Vivaldi antenna with higher radiation performances using metamaterials," Applied Physics A, vol. 124, no. 10, pp. 1-7, 2018.
[7]M. Samsuzzaman, M. T. Islam, M. T. Islam, A. A. Shovon, R. I. Faruque, and N. Misran, "A 16‐modified antipodal Vivaldi antenna array for microwave‐based breast tumor imaging applications," Microwave and Optical Technology Letters, vol. 61, no. 9, pp. 2110-2118, 2019.
[8]J. Eichenberger, E. Yetisir, and N. Ghalichechian, "High-gain antipodal Vivaldi antenna with pseudoelement and notched tapered slot operating at (2.5 to 57) GHz," IEEE Transactions on Antennas and Propagation, vol. 67, no. 7, pp. 4357-4366, 2019.
[9]S. El-Nady, H. M. Zamel, M. Hendy, A. A. Zekry, and A. Attiya, "Gain enhancement of a millimeter wave antipodal vivaldi antenna by epsilon-near-zero metamaterial," Progress In Electromagnetics Research C, vol. 85, pp. 105-116, 2018.
[10]B. Zhou and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 326-329, 2011.
[11]X. Shi, Y. Cao, Y. Hu, X. Luo, H. Yang, and L. H. Ye, "A High-Gain Antipodal Vivaldi Antenna With Director and Metamaterial at 1–28 GHz," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 12, pp. 2432-2436, 2021.
[12]Y. Xiao, F. Yang, S. Xu, M. Li, K. Zhu, and H. Sun, "Design and Implementation of a Wideband 1-Bit Transmitarray Based on a Yagi–Vivaldi Unit Cell," IEEE Transactions on Antennas and Propagation, vol. 69, no. 7, pp. 4229-4234, 2021.
[13]D. Huang, H. Yang, Y. Wu, F. Zhao, and X. Liu, "A high-gain antipodal Vivaldi antenna with multi-layer planar dielectric lens," Journal of ElEctromagnEtic WavEs and applications, vol. 32, no. 4, pp. 403-412, 2018.
[14]R. Kazemi, A. E. Fathy, and R. A. Sadeghzadeh, "Dielectric rod antenna array with substrate integrated waveguide planar feed network for wideband applications," IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1312-1319, 2012.
[15]M. Moosazadeh, "High-gain antipodal Vivaldi antenna surrounded by dielectric for wideband applications," IEEE Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 4349-4352, 2018.
[16]R. Cicchetti, V. Cicchetti, A. Faraone, L. Foged, and O. Testa, "A compact high-gain wideband lens vivaldi antenna for wireless communications and through-the-wall imaging," IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3177-3192, 2020.
[17]M. Amiri, F. Tofigh, A. Ghafoorzadeh-Yazdi, and M. Abolhasan, "Exponential antipodal Vivaldi antenna with exponential dielectric lens," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1792-1795, 2017.
[18]M. Moosazadeh, S. Kharkovsky, J. T. Case, and B. Samali, "Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete specimens," IEEE Antennas and wireless propagation letters, vol. 16, pp. 1317-1320, 2016.
[19]I. Kadri, A. Petosa, and L. Roy, "Ka-band Fresnel lens antenna fed with an active linear microstrip patch array," IEEE transactions on antennas and propagation, vol. 53, no. 12, pp. 4175-4178, 2005.
[20]F. A. Ghaffar, M. U. Khalid, K. N. Salama, and A. Shamim, "24-GHz LTCC fractal antenna array SoP with integrated Fresnel lens," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 705-708, 2011.
[21]A. Maltsev, O. Bolkhovskaya, and V. Seleznev, "Scanning Toroidal Lens-Array Antenna With a Zoned Profile for 60 GHz Band," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 7, pp. 1150-1154, 2021.
[22]M. F. Farooqui and A. Shamim, "3-D inkjet-printed helical antenna with integrated lens," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 800-803, 2016.
[23]A. E. Bezer, M. Abbak, T. Gursoy, and U. Aydin, "Comparison of 122 GHz lens antennas for system-on-chip FMCW radar with minimum back reflection and high gain," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 12, pp. 2329-2333, 2020.
[24]X. Zhu, J. Zhang, T. Cui, and Z. Zheng, "A dielectric-loaded dual-broadband printed dipole antenna with stable radiation pattern in the H-Plane," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 9, pp. 1761-1765, 2019.
[25]D. M. Pozar, Microwave engineering. John wiley & sons, 2011.
[26]C.-W. Tang, M.-G. Chen, and C.-H. Tsai, "Miniaturization of microstrip branch-line coupler with dual transmission lines," IEEE Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 185-187, 2008.
[27]W. A. Arriola, J. Y. Lee, and I. S. Kim, "Wideband 3 dB Branch Line Coupler Based on $\lambda/4$ Open Circuited Coupled Lines," IEEE microwave and wireless components letters, vol. 21, no. 9, pp. 486-488, 2011.
[28]S. Lee and Y. Lee, "Wideband branch-line couplers with single-section quarter-wave transformers for arbitrary coupling levels," IEEE Microwave and Wireless Components Letters, vol. 22, no. 1, pp. 19-21, 2011.
[29] E. Huber, M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, and I. Chang, "Dielectric property measurement of PLA," in 2016 IEEE International Conference on Electro Information Technology (EIT), 2016: IEEE, pp. 0788-0792.
[30][Online]. Available: https://3dfortify.com/.
[31]H. Lu, Z. Liu, Y. Liu, H. Ni, and X. Lv, "Compact Air-Filled Luneburg Lens Antennas Based on Almost-Parallel Plate Waveguide Loaded With Equal-Sized Metallic Posts," IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 6829-6838, 2019.
[32]S. Vo et al., "Sub-wavelength grating lenses with a twist," IEEE Photonics Technology Letters, vol. 26, no. 13, pp. 1375-1378, 2014.
[33]K. Park and H. Kim, "Sub-wavelength slit-assisted binary metallic lens design for effective multifocusing via phase superposition method," IEEE Access, vol. 8, pp. 115196-115201, 2020.
[34]M. Imbert, A. Papió, F. De Flaviis, L. Jofre, and J. Romeu, "Design and performance evaluation of a dielectric flat lens antenna for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 342-345, 2014.
[35]S. Chamaani, M. S. Abrishamian, and S. A. Mirtaheri, "Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization," IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 666-669, 2010.
[36]Y. Pan, Y. Cheng, and Y. Dong, "Dual-Polarized Directive Ultrawideband Antenna Integrated With Horn and Vivaldi Array," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 1, pp. 48-52, 2020.
[37]H. Kähkönen, J. Ala-Laurinaho, and V. Viikari, "Surface-mounted Ka-band Vivaldi antenna array," IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 126-137, 2020.
[38]L. Zhou, M. Tang, J. Qian, Y.-P. Zhang, and J. Mao, "Vivaldi Antenna Array with Heat Dissipation Enhancement for Millimeter-Wave Applications," IEEE Transactions on Antennas and Propagation, 2021.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top