|
[1] A. Kiyani, Nasimuddin, and K. P. Esselle, "A Wideband Circularly Polarized Dielectric Resonator Antenna over A Metasurface," in 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 8-13 July 2018 2018, pp. 2085-2086. [2]M. Zou, J. Pan, and Z. Nie, "A Wideband Circularly Polarized Rectangular Dielectric Resonator Antenna Excited by an Archimedean Spiral Slot," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 446-449, 2015. [3]Z. Hu, S. Wang, Z. Shen, and W. Wu, "Broadband Polarization-Reconfigurable Water Spiral Antenna of Low Profile," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1377-1380, 2017. [4]K. Ding, C. Gao, Y. Wu, D. Qu, and B. Zhang, "A Broadband Circularly Polarized Printed Monopole Antenna With Parasitic Strips," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2509-2512, 2017. [5]D. Yang, S. Liu, and D. Geng, "A Miniaturized Ultra-Wideband Vivaldi Antenna With Low Cross Polarization," IEEE Access, vol. 5, pp. 23352-23357, 2017. [6]M.-A. Boujemaa, R. Herzi, F. Choubani, and A. Gharsallah, "UWB Antipodal Vivaldi antenna with higher radiation performances using metamaterials," Applied Physics A, vol. 124, no. 10, pp. 1-7, 2018. [7]M. Samsuzzaman, M. T. Islam, M. T. Islam, A. A. Shovon, R. I. Faruque, and N. Misran, "A 16‐modified antipodal Vivaldi antenna array for microwave‐based breast tumor imaging applications," Microwave and Optical Technology Letters, vol. 61, no. 9, pp. 2110-2118, 2019. [8]J. Eichenberger, E. Yetisir, and N. Ghalichechian, "High-gain antipodal Vivaldi antenna with pseudoelement and notched tapered slot operating at (2.5 to 57) GHz," IEEE Transactions on Antennas and Propagation, vol. 67, no. 7, pp. 4357-4366, 2019. [9]S. El-Nady, H. M. Zamel, M. Hendy, A. A. Zekry, and A. Attiya, "Gain enhancement of a millimeter wave antipodal vivaldi antenna by epsilon-near-zero metamaterial," Progress In Electromagnetics Research C, vol. 85, pp. 105-116, 2018. [10]B. Zhou and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 326-329, 2011. [11]X. Shi, Y. Cao, Y. Hu, X. Luo, H. Yang, and L. H. Ye, "A High-Gain Antipodal Vivaldi Antenna With Director and Metamaterial at 1–28 GHz," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 12, pp. 2432-2436, 2021. [12]Y. Xiao, F. Yang, S. Xu, M. Li, K. Zhu, and H. Sun, "Design and Implementation of a Wideband 1-Bit Transmitarray Based on a Yagi–Vivaldi Unit Cell," IEEE Transactions on Antennas and Propagation, vol. 69, no. 7, pp. 4229-4234, 2021. [13]D. Huang, H. Yang, Y. Wu, F. Zhao, and X. Liu, "A high-gain antipodal Vivaldi antenna with multi-layer planar dielectric lens," Journal of ElEctromagnEtic WavEs and applications, vol. 32, no. 4, pp. 403-412, 2018. [14]R. Kazemi, A. E. Fathy, and R. A. Sadeghzadeh, "Dielectric rod antenna array with substrate integrated waveguide planar feed network for wideband applications," IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1312-1319, 2012. [15]M. Moosazadeh, "High-gain antipodal Vivaldi antenna surrounded by dielectric for wideband applications," IEEE Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 4349-4352, 2018. [16]R. Cicchetti, V. Cicchetti, A. Faraone, L. Foged, and O. Testa, "A compact high-gain wideband lens vivaldi antenna for wireless communications and through-the-wall imaging," IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3177-3192, 2020. [17]M. Amiri, F. Tofigh, A. Ghafoorzadeh-Yazdi, and M. Abolhasan, "Exponential antipodal Vivaldi antenna with exponential dielectric lens," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1792-1795, 2017. [18]M. Moosazadeh, S. Kharkovsky, J. T. Case, and B. Samali, "Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete specimens," IEEE Antennas and wireless propagation letters, vol. 16, pp. 1317-1320, 2016. [19]I. Kadri, A. Petosa, and L. Roy, "Ka-band Fresnel lens antenna fed with an active linear microstrip patch array," IEEE transactions on antennas and propagation, vol. 53, no. 12, pp. 4175-4178, 2005. [20]F. A. Ghaffar, M. U. Khalid, K. N. Salama, and A. Shamim, "24-GHz LTCC fractal antenna array SoP with integrated Fresnel lens," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 705-708, 2011. [21]A. Maltsev, O. Bolkhovskaya, and V. Seleznev, "Scanning Toroidal Lens-Array Antenna With a Zoned Profile for 60 GHz Band," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 7, pp. 1150-1154, 2021. [22]M. F. Farooqui and A. Shamim, "3-D inkjet-printed helical antenna with integrated lens," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 800-803, 2016. [23]A. E. Bezer, M. Abbak, T. Gursoy, and U. Aydin, "Comparison of 122 GHz lens antennas for system-on-chip FMCW radar with minimum back reflection and high gain," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 12, pp. 2329-2333, 2020. [24]X. Zhu, J. Zhang, T. Cui, and Z. Zheng, "A dielectric-loaded dual-broadband printed dipole antenna with stable radiation pattern in the H-Plane," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 9, pp. 1761-1765, 2019. [25]D. M. Pozar, Microwave engineering. John wiley & sons, 2011. [26]C.-W. Tang, M.-G. Chen, and C.-H. Tsai, "Miniaturization of microstrip branch-line coupler with dual transmission lines," IEEE Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 185-187, 2008. [27]W. A. Arriola, J. Y. Lee, and I. S. Kim, "Wideband 3 dB Branch Line Coupler Based on $\lambda/4$ Open Circuited Coupled Lines," IEEE microwave and wireless components letters, vol. 21, no. 9, pp. 486-488, 2011. [28]S. Lee and Y. Lee, "Wideband branch-line couplers with single-section quarter-wave transformers for arbitrary coupling levels," IEEE Microwave and Wireless Components Letters, vol. 22, no. 1, pp. 19-21, 2011. [29] E. Huber, M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, and I. Chang, "Dielectric property measurement of PLA," in 2016 IEEE International Conference on Electro Information Technology (EIT), 2016: IEEE, pp. 0788-0792. [30][Online]. Available: https://3dfortify.com/. [31]H. Lu, Z. Liu, Y. Liu, H. Ni, and X. Lv, "Compact Air-Filled Luneburg Lens Antennas Based on Almost-Parallel Plate Waveguide Loaded With Equal-Sized Metallic Posts," IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 6829-6838, 2019. [32]S. Vo et al., "Sub-wavelength grating lenses with a twist," IEEE Photonics Technology Letters, vol. 26, no. 13, pp. 1375-1378, 2014. [33]K. Park and H. Kim, "Sub-wavelength slit-assisted binary metallic lens design for effective multifocusing via phase superposition method," IEEE Access, vol. 8, pp. 115196-115201, 2020. [34]M. Imbert, A. Papió, F. De Flaviis, L. Jofre, and J. Romeu, "Design and performance evaluation of a dielectric flat lens antenna for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 342-345, 2014. [35]S. Chamaani, M. S. Abrishamian, and S. A. Mirtaheri, "Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization," IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 666-669, 2010. [36]Y. Pan, Y. Cheng, and Y. Dong, "Dual-Polarized Directive Ultrawideband Antenna Integrated With Horn and Vivaldi Array," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 1, pp. 48-52, 2020. [37]H. Kähkönen, J. Ala-Laurinaho, and V. Viikari, "Surface-mounted Ka-band Vivaldi antenna array," IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 126-137, 2020. [38]L. Zhou, M. Tang, J. Qian, Y.-P. Zhang, and J. Mao, "Vivaldi Antenna Array with Heat Dissipation Enhancement for Millimeter-Wave Applications," IEEE Transactions on Antennas and Propagation, 2021.
|