跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳健源
研究生(外文):CHEN, JIAN-YUAN
論文名稱:具有低電磁干擾與快速暫態響應之降壓轉換器設計與實現
論文名稱(外文):Design and Implementation of Buck Converters with Low EMI and Fast Transient Responses
指導教授:黃育賢
指導教授(外文):HWANG, YUH-SHYAN
口試委員:黃育賢陳建中郭建宏邱弘緯
口試委員(外文):HWANG, YUH-SHYANCHEN, JIANN-JONGKUO, CHIEN-HUNGCHIU, HUNG-WEI
口試日期:2022-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:降壓轉換器三角積分調變固定導通時間DCR電流感測
外文關鍵詞:Buck ConverterDelta-Sigma-ModulationConstant On-TimeDCR Current Sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩顆降壓式轉換器,皆使用台灣積體電路公司 0.18μm 1P6M製程進行設計與實現。
第一顆晶片為使用暫態加速電路之適應性二階三角積分調變降壓轉換器,採用電流模式控制。轉換器利用超取樣與雜訊移頻技術來降低輸出訊號的電磁干擾,並加入暫態加速電路以改善調變器的暫態響應。晶片總面積為1.422mm2(1.195mm×1.19 mm)。輸入電壓範圍為3 V-3.6 V,輸出電壓電壓範圍為1 V-2.5 V,負載電流範圍為50–500毫安培,負載電流由50毫安培切換為500毫安培與500毫安培切換為50毫安培的暫態響應為分別為2.5 μs與3 μs,在負載電流300mA時,有最高效率為92.31%。
第二顆晶片為使用新型電感直流電阻電流感測技術之固定導通時間控制降壓轉換器,採用漣波模式控制,使用電晶體取代感測電阻,使面積縮小,並額外加入一條輸出電壓回授路徑來補償電流斜率提升穩定度與縮短暫態響應的時間。晶片總面積為1.312mm2(1.193mm×1.1 mm)。輸入電壓範圍為3–3.6 V,輸出電壓範圍為0.5 V–2.5 V,負負載電流範圍為50–500毫安培,負載電流由100毫安培切換為500毫安培與500毫安培切換為100毫安培的暫態響應為分別為4.2 μs與2.5 μs,最高效率為91.5%。

This thesis proposes two buck converters, both were designed and implemented with TSMC 0.18μm 1P6M process.
The first chip proposes an adaptive 2nd-order delta-sigma-modulation buck converter with transient accelerated circuits, which adopts current-mode control. The converter uses oversampling and noise frequency shifting technology to reduce the EMI of the output signal, and adds transient acceleration circuits to improve the transient response of the modulator. The total chip area is 1.195×1.19 mm2. The input voltage range is 3.3 V - 3.6 V, the output voltage voltage range is 1 V-2.5 V, the load current range is 50mA - 500 mA, the load current is switched from 50 mA to 500 mA and 500 mA to 50 mA are 2.5 μs and 3 μs. When the load current is 300mA, it has a maximum efficiency of 92.31%.
The second chip proposes a constant on-time controlled buck converter using new type DCR current-sensing technique. It adopts ripple-based-mode control and uses a transistor to replace the sensing resistor, reduces the area, and adds an additional output voltage feedback path to compensate current slope to improve stability and shorten transient response time. The total chip area is 1.19×1.1 mm2. The input voltage range is 3 V - 3.6 V, the output voltage range is 0.5 V–2.5 V, the load current range is 50mA - 500 mA, the load current is switched from 100 mA to 500 mA and 500 mA to 100 mA are 4.2 μs and 2.5 μs. When the load current is 300mA, it has a maximum efficiency of 91.5%.

摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 序論 1
1.1 研究背景與動機 1
1.2 相關研究之發展近況 1
1.3 論文架構 4
第二章 切換式轉換器之原理介紹與分析 5
2.1 降壓式轉換器架構介紹 6
2.1.1 連續導通模式 7
2.1.2 非連續導通模式 11
2.1.3 邊界導通模式 13
2.2 切換式轉換器之控制方式與調變技術 16
2.2.1 電壓模式 16
2.2.2 電流模式 17
2.2.3 漣波模式 19
2.3 切換式轉換器之規格與定義 21
2.3.1 暫態響應 21
2.3.2 輸出漣波電壓 22
2.3.3 線性調節率 22
2.3.4 負載調節率 23
2.3.5 轉換效率 23
第三章 使用暫態加速電路之適應性二階三角積分調變降壓轉換器 25
3.1 類比數位訊號轉換概論 25
3.2 三角積分調變原理與分析 26
3.2.1 取樣定理 28
3.2.2 量化誤差 30
3.2.3 雜訊移頻 33
3.3 架構簡介 38
3.3.1 暫態加速電路 39
3.3.2 適應性二階三角積分調變器 42
3.3.3 Type III補償器 45
3.3.4 非重疊電路 47
3.3.5 驅動電路 47
3.4 電路模擬 48
3.5 電路佈局與量測結果 51
3.5.1 晶片佈局 51
3.5.2 晶片腳位與定義 52
3.5.3 量測環境 54
3.5.4 量測結果 55
3.5.5 規格表與相關文獻比較 61
第四章 使用新型電感直流電阻電流感測技術之固定導通時間控制降壓轉換器 63
4.1 架構簡介 63
4.1.1 新型電感直流電阻電流感測器 64
4.1.2 電流加法電路 65
4.1.3 導通時間調變 66
4.1.4 遲滯比較器 67
4.2 電路模擬 69
4.3 電路佈局與量測結果 73
4.3.1 晶片佈局 73
4.3.2 晶片腳位與定義 74
4.3.3 量測環境 76
4.3.4 量測結果 77
4.3.5 規格表與相關文獻比較 82
第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 85
參考文獻 86
[1]B. Razavi, “Design of Analog CMOS Integrated Circuit”, McGraw-Hill. 2001.
[2]R. W. Erickson and D. Maksimovis, “Fundamentals of Power Electronics”, Norwell, MA Kluwer, 2001.
[3]X. Tong and K. Wei, "A Fully Integrated Fast-Response LDO Voltage Regulator with Adaptive Transient Current Distribution," 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2017, pp. 651-654.
[4]X. Jiang, X. Yu, K. Moez, D. G. Elliott and J. Chen, "High-Efficiency Charge Pumps for Low-Power On-Chip Applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, pp. 1143-1153, March 2018.
[5]J. –J. Chen, F. –C. Yang and C. –C. Chen, "A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits," IEEE Trans. Industrial Electron., vol. 55, no. 3, pp. 1101-1111, March 2008.
[6]梁適安,交換式電源供給器之理論與實務設計,全華書局,2001。
[7]S. J. Kim, W. –S. Choi, R. Pilawa-Podgurski and P. K. Hanumolu, "A 10-MHz 2–800-mA 0.5–1.5-V 90% Peak Efficiency Time-Based Buck Converter With Seamless Transition Between PWM/PFM Modes," IEEE J. Solid-State Circuits, vol. 53, no. 3, pp. 814-824, March 2018.
[8]H. Wang, X. Hu, Q. Liu, G. Zhao and D. Luo, "An On-Chip High-Speed Current Sensor Applied in the Current-Mode DC–DC Converter," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4479-4484, Sept. 2014.
[9]X. Tong and K. Wei, "A Fully Integrated Fast-Response LDO Voltage Regulator with Adaptive Transient Current Distribution," 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2017, pp. 651-654.
[10]J. Kang, J. Park, M. Jeong and C. Yoo, "A Time-Domain-Controlled Current-Mode Buck Converter With Wide Output Voltage Range," IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 865-873, March 2019.
[11]R. Redl and J. Sun, "Ripple-Based Control of Switching Regulators—An Overview," IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[12]W. Yan, W. Li and R. Liu, "A noise-shaped buck dc–dc converter with improved light-load efficiency and fast transient response," IEEE Trans. Power Electron., Vol. 26, no. 12, pp. 3908-3924, Dec. 2011.
[13]M. K. Alghamdi and A. A. Hamoui, "A spurious-free switching buck converter achieving enhanced light-load efficiency by using a ΣΔ -modulator controller with a scalable sampling frequency," IEEE J. Solid-State Circuits, Vol. 47, no. 4, pp. 841-851, Apr. 2012.
[14]J.J. Chen, Y.S. Hwang, J.H. Yu, Y.T. Ku and C.C. Yu, "A low-EMI buck converter suitable for wireless sensor networks with spur-reduction techniques," IEEE Sens. J., vol. 16, no. 8, pp. 2588-2597, Apr. 2016.
[15]Y.S. Hwang, J.J. Chen, W.J. Hou, P.H. Liao and Y.T. Ku, "A 10-us transient recovery time low-EMI dc-dc buck converter with Δ – Σ modulator," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 24, no. 9, pp. 2983-2992, Sep. 2016.
[16]J.J. Chen, Y.S. Hwang, C.S. Jheng, Y.T. Ku and C.C. Yu, "A low-electromagnetic-interference buck converter with continuous-time delta-sigma-modulation and burst-mode techniques," IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 6860-6869, Sep. 2018.
[17]Y.K. Cho, M.D. Kim and C.Y. Kim, "A low switching noise and high-efficiency buck converter using a continuous-time reconfigurable delta-sigma modulator," IEEE Trans. Power Electron., Vol. 33, no. 12, pp. 10501-10511, Dec. 2018.
[18]Y.K. Cho and K.C. Lee, "Noninverting buck–boost dc–dc converter using a duobinary-encoded single-bit delta-sigma modulator," IEEE Trans. Power Electron., vol. 35, no. 1, pp. 484-495, Jan. 2020.
[19]Y.S. Hwang, J.J. Chen, J. Yang and Y.T. Ku, "A low-EMI continuous-time delta-sigma-modulator buck converter with transient response eruption techniques," IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6854-6863, Aug. 2020.
[20]J. -J. Chen, Y. -S. Hwang, Y. Ku, J. -A. Chen and C. -H. Lai, "A New Improved Second-Order Delta-Sigma-Modulation Buck Converter With Low-Noise and Transient-Acceleration Loops," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 64-73, Jan. 2022.
[21]J. -J. Chen, Y. -S. Hwang, H. -J. Liu, C. -H. Lai and Y. Ku, "A Low-Noise Fast-Transient-Response Buck Converter Suitable for Sensor Networks With New Transient-Accelerated-Circuits," IEEE Sensors Journal, vol. 22, no. 3, pp. 2868-2876, 1 Feb.1, 2022.
[22]J. -J. Chen, Y. -S. Hwang, T. -S. Tzeng, C. -H. Lai and J. Ku, "A Low-Noise Fast-Transient-Response Delta-Sigma-Modulation Buck Converter With Hysteresis-Voltage-Controlled Techniques," IEEE Access, vol. 10, pp. 63063-63072, 2022.
[23]J. -J. Chen, Y. -S. Hwang, S. -H. Ho, C. -H. Lai and Y. Ku, "An Improved Low-EMI Fast-Transient-Response Buck Converter Suitable for Wireless Sensor Networks With New Transient Accelerated Techniques," IEEE Sensors Journal, vol. 22, no. 8, pp. 8234-8244, 15 April15, 2022.
[24]Amit Kumar Singha, and Santanu Kapat. "A unified framework for analysis and design of a digitally current-mode controlled buck converter," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 11, Nov. 2016.
[25]Y. C. Li, C. J. Chen and C. J. Tsai, "A Constant On-Time Buck Converter With Analog Time-Optimized On-Time Control," IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3754-3765, April 2020.
[26]J. -J. Chen, Y. -S. Hwang, J. -H. Wu, C. -H. Lai and Y. -T. Ku, "A New Improved V-Square-Controlled Buck Converter With Rail-to-Rail OTA-Based Current-Sensing Circuits," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 7, pp. 1428-1436, July 2021.
[27]J. -J. Chen, Y. -S. Hwang, W. -M. Jiang, C. -H. Lai and J. Ku, "A New Improved Ultra-Fast-Response Low-Transient-Voltage Buck Converter With Transient-Acceleration Loops and V-Cubic Techniques," IEEE Access, vol. 10, pp. 3601-3607, 2022.
[28]B. Wang, D. Chen, C. -J. Chen and S. -F. Hsiao, "Stability Prediction of Integrated-Circuit Based Constant ON-Time Controlled Buck Converters," IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6838-6849, June 2021.
[29]Jiann-Jong Chen, Cheng-Yu Huang, Chang-I Chou, Yuh-Shyan Huang, Cheng-Chieh Yu. "A simple fast-transient-response buck converter using adaptive-hysteresis-controlled techniques," Electron Devices and Solid-State Circuits (EDSSC), 2015 IEEE International Conference on. IEEE, 2015.
[30]M. Nashed and A. A. Fayed, "Current-Mode Hysteretic Buck Converter With Spur-Free Control for Variable Switching Noise Mitigation," IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 650-664, Jan. 2018.
[31]M. Jeong, J. Kang, J. Park and C. Yoo, "A Current-Mode Hysteretic Buck Converter With Multiple-Reset RC-Based Inductor Current Sensor," IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8445-8453, Nov. 2019.
[32]Jiann-Jong Chen, Yuh-Shyan Hwang, Yitsen Ku, Yun-Hua Li and Jian-An Chen, “A Current-Mode-Hysteretic Buck Converter With Constant-Frequency-Controlled and New Active-Current-Sensing Techniques,” IEEE Trans. on Power Electronics, vol. 36, no. 3, pp. 3126-3134, Mar. 2021.
[33]Bing Yuan, Meng-Xue Liu, Wai Tung Ng and Xin-Quan Lai, “A Fast-Response RBAOT-Controlled Buck Converter With Pseudofixed Switching Frequency and Enhanced Output Accuracy,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 79-88, Feb. 2021.

電子全文 電子全文(網際網路公開日期:20250801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 適應性導通時間降壓轉換器和磁滯電流控制降壓轉換器與連續時間三角積分升壓轉換器
2. 使用仿電流感測技術之適應性導通時間控制降壓型轉換器與具有低電磁干擾之新型連續時間三角積分調變升壓型轉換器
3. 零電流偵測自適應導通時間控制降壓轉換器與新型連續時間三角積分調變升壓轉換器
4. 使用適應性導通時間控制與鎖相鎖頻技術之快速動態電壓調節電流式降壓轉換器
5. 自適應導通時間控制升壓轉換器與二階三角積分調變降壓轉換器之設計
6. 使用新型電流感測之磁滯控制降壓轉換器與新型低電磁干擾暫態加速迴路之二階三角積分調變降壓轉換器
7. 採用新型電流感測電路之磁滯電流控制降壓轉換器與具快速暫態響應之磁滯電壓控制三角積分調變降壓轉換器
8. 使用新型電流感測技術之磁滯電流控制降壓轉換器與使用暫態加速電路及二階三角積分調變控制降壓轉換器
9. 新型自適應導通時間控制電流模式降壓轉換器之研製
10. 低電磁干擾三角積分調變降壓轉換器與快速暫態響應自適應導通降壓轉換器
11. 固定導通時間增強漣波電壓平方降壓轉換器
12. 具頻率校正固定導通時間電流平方降壓轉換器
13. 新型高效率連續時間三角積分調變升壓轉換器
14. 漣波控制固定導通時間降壓轉換器之設計
15. 低電磁干擾三角積分調變降壓轉換器與低電壓自適應導通時間控制升壓轉換器設計
 
無相關期刊