跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅泓凱
研究生(外文):LO, HUNG-KAI
論文名稱:反射式血氧模擬器之研製
論文名稱(外文):Development of Reflective Blood Oxygen Simulator
指導教授:李仁貴李仁貴引用關係
指導教授(外文):LEE, REN-GUEY
口試委員:李仁貴吳文中曾傳蘆
口試委員(外文):LEE, REN-GUEYWU, WEN-JONGTSENG, CHWAN-LU
口試日期:2022-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:71
中文關鍵詞:反射式血氧紅光近紅外光光體積變化描記圖法
外文關鍵詞:ReflectiveSpO2Red LEDIR LEDPPG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧氣是人們生活中不可或缺的一部分,若是缺乏足夠的氧氣會影響細胞的新陳代謝甚至死亡,因此脈博血氧飽和度(oxyhemoglobin saturation by pulse oximetry, SpO2)為人體健康的一個重要指標,市面上的穿戴式裝置絕大多數擁有量測血氧功能。反射式血氧量測的需求逐漸增加,開發者研發穿戴式裝置的血氧濃度需透過血氧模擬器進行驗證。現今大多數是穿透式血氧模擬器,並且價格非常昂貴,因此本論文設計出低成本反射式模擬器來提供開發者使用。
本研究中,使用嵌入式Linux系統進行開發,使用音效卡DAC16 bit 192KHz 取樣率來控制一組 LED 紅光和紅外光進行光體積變化描記圖法(Photoplethysmography, PPG)訊號模擬,透過 Fluke Prosim8 穿透式血氧模擬器將量測的數據來對本系統所產生的光體積變化描記圖法模擬訊號進行校正,並能模擬血氧濃度: 70%~99%、訊號強度: 4%~10%。
本論文完成反射式血氧模擬器,透過Fluke Prosim8來驗證血氧濃度差異,在SpO2在70%~99% PI大於7以上有小於1.5%的血氧濃度誤差,在Apple Watch與Garmin Watch 上量測無效,可能是因血氧量測需要多組光源進行量測,無法得知穿戴式裝置相對應收光的時間所造成無法量測之情況。

Oxygen is an indispensable part of people's life. If our body’s oxygen is insufficient, it will affect the cell metabolism and even die. Therefore, oxyhemoglobin saturation by pulse oximetry (SpO2) is an important indicator of human health, and most of the wearable devices on the market have the function of measuring blood oxygen.
The demand for reflective blood oxygen measurement is gradually increasing. The blood oxygen concentration of the wearable device developed by the developer needs to be verified by the blood oxygen simulator. Today, most transmissive blood oxygen simulators are very expensive, so this paper designs a low-cost reflective simulator offer developers using.
In this study, The embedded Linux system is used for development, and the audio DAC 16 bit 192KHz sampling rate is used to control a set of LED red light and infrared light for Photoplethysmography (PPG) signal simulation, through Fluke Prosim8 transmissive blood oxygen simulator uses the measured data to correct the photoplethysmographic analog signal generated by the system, and can simulate blood oxygen concentration: 70%~99%, signal strength: 4%~10% .
This paper completes a reflective blood oxygen simulator, and uses Fluke Prosim8 to verify the difference in SpO2. When SpO2 between 70% and 99%, and PI level greater than 7, there is a blood oxygen concentration error of less than 1.5%. The measurement on Apple Watch and Garmin Watch was invalid, probably because the blood oxygen measurement required multiple light sources for measurement, and the timing of the corresponding light received by the wearable device was not known.

摘要-i
ABSTRACT-ii
致謝-iv
目錄-v
表目錄-viii
圖目錄-x
第一章 緒論-1
1.1 前言-1
1.2 研究背景與動機-2
1.3 論文架構-2
第二章 背景知識與相關研究-4
2.1 光體積變化描記圖(Photoplethysmography, PPG)-4
2.2 血氧飽和度(Oxyhemoglobin Saturation)-5
2.2.1 血氧飽和度簡介-5
2.2.2 血氧飽和度計算方法-6
2.3 數位訊號處理-8
2.3.1 傅立葉轉換(Fourier Transform)-8
2.3.2 巴特沃斯濾波器(Butterworth Filter)-9
2.3.3 多級移動平均濾波器(Multiple Moving Average Filter)-10
2.4 Rock PI S(RK3308)平台介紹-11
2.5 PPG感測器(AFE4900) 介紹-14
2.6 Fluke Prosim8多功能生理訊號模擬器-17
2.7 相關研究回顧-18
2.7.1 文獻回顧介紹-18
2.7.2 文獻回顧總結-26
第三章 系統設計與實驗方法-27
3.1 系統架構-28
3.2 系統流程-30
3.3 硬體架構設計方法-32
3.3.1 無源一階低通濾波器電路設計-33
3.3.2 訊號放大電路-36
3.3.3 電壓電流轉換電路-37
3.3.4 解多工器電路-38
3.4 軟體設計方法-39
3.4.1 Rock PI S核心撰寫與編譯方法-39
3.4.2 時序校正方法-45
3.4.3 模擬血氧濃度變化方法-47
3.5 驗證本系統方法-49
3.5.1 驗證LED打光時序-49
3.5.2 驗證光體積變化描記圖訊號方法-51
第四章 結果與討論-52
4.1 光體積變化描記圖訊號結果與評估-52
4.1.1 本系統模擬光體積變化描記圖訊號分析之結果-52
4.1.2 本系統模擬光體積變化描記圖訊號分析之討論-59
4.2 血氧濃度分析結果與討論-60
4.2.1 穿戴式裝置與本系統血氧濃度分析之結果-61
4.2.2 穿戴式裝置與本系統血氧濃度分析之討論-63
第五章 結論與未來展望-64
5.1 結論-64
5.2 未來展望-65
參考文獻-66
附錄-71

[1]衛生福利部,”國家高速網路與計算中心–covid-19全球確診地圖”[Online] https://covid19.mohw.gov.tw/ch/cp-4707-52357-205.html [Last date visited July. 05,2022]
[2]J. Přibil, A. Přibilová, and I. Frollo, “Comparative measurement of the PPG signal on different human body positions by sensors working in reflection and transmission modes,” Engineering Proceedings, vol. 2, no. 1, pp. 69, Nov. 2020.
[3]A. A. Silverio, J. E. Asilo, and S. L. D. Balagat, et al. “Micromotion Artefact Reduction of a Wrist Worn PPG Sensor Using Green Light PPG and Surface EMG,” In 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), pp. 1-5, Dec. 2020.
[4]P. M. Mohan, A. A. Nisha, V. Nagarajan, and E. S. J. Jothi, “Measurement of arterial oxygen saturation (SpO2) using PPG optical sensor,” In 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 1136-1140, Apr. 2016,.
[5]S. Sinchai, P. Kainan, and P. Wardkein, et al. “A photoplethysmographic signal isolated from an additive motion artifact by frequency translation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 4, pp. 904-917, Aug. 2018.
[6]E. W. Weisstein, [Online] Fourier transform. https://mathworld. wolfram. com/, 2004. [Last date visited July. 05,2022]
[7]S. Weinstein, and P. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE transactions on Communication Technology, vol. 19, no. 5, pp. 628-634, Oct. 1971.
[8]I. W. Selesnick, and C. S. Burrus, “Generalized digital Butterworth filter design,” IEEE Transactions on signal processing, vol. 46, no. 6, pp. 1688-1694, Jun. 1998.
[9]S. Golestan, M. Ramezani, and J. M. Guerrero, et al. “Moving average filter based phase-locked loops: Performance analysis and design guidelines,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2750-2763, Jun. 2013.
[10]程式人生,”瑞芯微RK3308產品詳細資訊介紹,RK3308晶片效能分析” [Online] https://www.796t.com/content/1544096104.html [Last date visited July. 05,2022]
[11]C. Schreiner, P. Catherwood, and J. Anderson, et al. “Blood oxygen level measurement with a chest-based pulse oximetry prototype system,” In 2010 Computing in Cardiology, pp. 537-540, Sep. 2010.
[12]C. H. Lu, J. E. Wei, and C. C. Tuan, “Detecting Four-Limb Blood Oxygen Saturation and Heart Rate based on Reflex Photoplethysmography,” In Proceedings of the 2nd International Conference on E-Society, E-Education and E-Technology, pp. 145-149, Aug. 2018.
[13]J. Wan, Y. Zou, and Y. Li, et al. “Reflective type blood oxygen saturation detection system based on MAX30100,” In 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp. 615-619, Dec. 2017.
[14]M. Krizea, J. Gialelis, and A. Kladas, et al. “Accurate Detection of Heart Rate and Blood Oxygen Saturation in Reflective Photoplethysmography,” In 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1-4. Dec. 2020.
[15]R. Kirszenblat, and P. Edouard, “Validation of the Withings ScanWatch as a Wrist-Worn Reflective Pulse Oximeter: Prospective Interventional Clinical Study,” Journal of Medical Internet Research, vol. 23, no. 4, pp. e27503, Apr. 2021.
[16]S. Marinari, P. Volpe, and M. Simoni, et al. “Accuracy of a New Pulse Oximetry in Detection of Arterial Oxygen Saturation and Heart Rate Measurements: The SOMBRERO Study,” Sensors, vol. 22, no. 13, pp. 5031, Jul. 2022.
[17]Y. H. Kao, P. C. P. Chao, and C. L. Wey, “Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 1, pp. 1-10, Jan.-Feb. 2018.
[18]W. Verkruysse, M. Bartula, and E. Bresch, et al. “Calibration of contactless pulse oximetry,” Anesthesia and analgesia, vol. 124, no. 1, pp. 136 , Jan. 2017.
[19]M. Huelsbusch, and V. Blazek, “Contactless mapping of rhythmical phenomena in tissue perfusion using PPGI,” In Medical Imaging 2002: Physiology and Function from Multidimensional Images, vol. 4683, pp. 110-117, Apr. 2002.
[20]Y. Sun, and N. Thakor, “Photoplethysmography revisited: from contact to noncontact, from point to imaging,” IEEE transactions on biomedical engineering, vol. 63, no. 3, pp. 463-477, Mar. 2015.
[21]I. Fine, “The optical origin of the PPG signal,” In Saratov Fall Meeting 2013: Optical Technologies in Biophysics and Medicine XV; and Laser Physics and Photonics XV, vol. 9031, pp. 7-15, Jan. 2014.
[22]T. Y. Tu, and P. C. P. Chao, “Optimal design of a new strain-type sensor for cuff-less blood pressure measurement via finite element modeling and Taguchi method,” IEEE Sensors Journal, vol. 19, no. 22, pp. 10355-10364, Nov. 2019.
[23]C. Hoog Antink, Y. Mai, and M. Peltokangas, et al. “Accuracy of heart rate variability estimated with reflective wrist-PPG in elderly vascular patients,” Scientific reports, vol. 11, no. 1, pp. 1-12, Apr. 2021.
[24]G. B. Papini, P. Fonseca, and M. M. van Gilst, et al. “Respiratory activity extracted from wrist-worn reflective photoplethysmography in a sleep-disordered population,” Physiological Measurement, vol. 41, no. 6, pp. 065010, Jul. 2020.
[25]A. M. Carek, H. Jung, and O. T. Inan, “A reflective photoplethysmogram array and channel selection algorithm for weighing scale based blood pressure measurement,” IEEE Sensors Journal, vol. 20, no. 7, pp. 3849-3858, Apr. 2019.
[26]H. Nogami, W. Iwasaki, and N. Morita, et al. “Relationship between AC/DC Ratio and Light-blocking Structure for Reflective Photoplethysmographic Sensor,” Sensors and Materials, vol. 30, no. 12, pp. 3021-3028, May. 2018.
[27]H. Lee, E. Kim, and Y. Lee, et al. “Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch,” Science advances, vol. 4, no. 11, pp. eaas 9530, Nov. 2018.
[28]K. Selvakumar, E. V. Kumar, and M. Sailesh, et al. “Realtime PPG based respiration rate estimation for remote health monitoring applications,” Biomedical Signal Processing and Control, vol. 77, no. 103746 , Aug. 2022.
[29]E. F. Pribadi, R. K. Pandey, and P. C. P. Chao, “Optimizing a novel PPG sensor patch via optical simulations towards accurate heart rates,” Microsystem Technologies, vol. 26, no. 11, pp. 3409-3420, Jun. 2020.
[30]F. Marefat, R. Erfani, and P. Mohseni, “A 1-V 8.1-μW PPG-Recording Front-End With> 92-dB DR Using Light-to-Digital Conversion With Signal-Aware DC Subtraction and Ambient Light Removal,” IEEE Solid-State Circuits Letters, vol. 3, pp. 17-20, Dec. 2019.
[31]V. Hartmann, H. Liu, and F. Chen, et al. “Quantitative comparison of photoplethysmographic waveform characteristics: effect of measurement site,” Frontiers in physiology, vol. 10, no. 198, Mar. 2019.
[32]H. L. Chen, S. E. Hsieh, and T. H. Hsu, et al. “A CMOS Imager for Reflective Pulse Oximeter with Motion Artifact and Ambient Interference Rejections.” In 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 25-26, Nov. 2018.
[33]R. Mukherjee, S. Ghosh, and B. Gupta, et al. “A universal noninvasive continuous blood pressure measurement system for remote healthcare monitoring,” Telemedicine and e-Health, vol. 24, no. 10, pp. 803-810, Oct. 2018.
[34]J. Lee, D. H. Jang, and S. Park, et al. “A low-power photoplethysmogram-based heart rate sensor using heartbeat locked loop,” IEEE transactions on biomedical circuits and systems, vol. 12, no. 6, pp. 1220-1229, Dec. 2018.
[35]A. Reisner, P. A. Shaltis, and D. McCombie, et al. “Utility of the photoplethysmogram in circulatory monitoring,” The Journal of the American Society of Anesthesiologists, vol. 108, no. 5, pp. 950-958, May. 2008.
[36]S. Lyra, F. Voss, and A. Coenen, et al. “A neonatal phantom for vital signs simulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 5, pp. 949-959, Oct. 2021.
[37]H. G. Espinosa, D. V. Thiel, and M. Sorell, et al. “Can We Trust Inertial and Heart Rate Sensor Data from an APPLE Watch Device?,” Multidisciplinary Digital Publishing Institute Proceedings, vol. 49, no. 1, pp. 128, Jun. 2020.
[38]B. Bradke, and B. Everman, “Investigation of photoplethysmography behind the ear for pulse oximetry in hypoxic conditions with a novel device (SPYDR),” Biosensors, vol. 10, no. 4, pp. 34, Apr. 2020.
[39]J. Fine, K. L. Branan, and A. J. Rodriguez, et al. “Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring,” Biosensors, vol. 11, no. 4, pp. 126, Apr. 2021.
[40]N. Sviridova, T. Zhao, and K. Aihara, et al. “Photoplethysmogram at green light: Where does chaos arise from?,” Chaos, Solitons & Fractals, vol. 116, pp. 157-165, Nov. 2018.

電子全文 電子全文(網際網路公開日期:20270825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊