|
[1] P. Liznerski, L. Ruff, R. A. Vandermeulen, B. J. Franks, M. Kloft, and K.-R. Müller, “Explainable deep one-class classification,” 2020, arXiv:2007.01760. [Online]. Available: http://arxiv.org/abs/1906.12340, Accessed: Mar. 18. 2021.
[2] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S.A. Siddiqui, A. Binder, E. Müller and M. Kloft, "Deep one-class classification." in Proc. of Int. Conf. on Machine Learning, Stockholm, Sweden,pp.80:4393-4402, July, 2018.
[3] L. Ruff, R.A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.R. Müller, and M. Kloft, "Deep semi-supervised anomaly detection," 2019, arXiv:1906.02694. [Online]. Available: http://arxiv.org/abs/1906.02694, Accessed: Feb. 14. 2020.
[4] O. Zendel, M. Murschitz, M. Zeilinger, D. Steininger, S. Abbasi, and C. Beleznai., "RailSem19: A Dataset for Semantic Rail Scene Understanding," in Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), CA, USA,pp.1221-1229, June, 2019.
[5] A. Hornberg, Handbook of Machine Vision. Wiley-VCH, 2006.
[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing Surveys, vol. 41, no. 3, pp.1-58, Jul. 2009.
[7] O. Rippel and D. Merhof, “Anomaly detection for automated visual inspection: a review,” Bildverarbeitung in der Automation,pp.1–13, March, 2023.
[8] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” 2021, arXiv:2003.05991. [Online]. Available: https://arxiv.org/abs/2003.05991, Accessed: Apr. 03, 2021.
[9] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A Survey of Modern Deep Learning based Object Detection Models,” 2021, arXiv:2104.11892. [Online]. Available: https://arxiv.org/abs/2104.11892, Accessed: May 12, 2021.
[10] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image Segmentation Using Deep Learning: A Survey,” 2020, arXiv:2001.05566. [Online]. Available: https://arxiv.org/abs/2001.05566, Accessed: Nov. 14, 2020.
[11] Y. Ouali, C. Hudelot, and M. Tami, “An Overview of Deep Semi-Supervised Learning,” 2020, arXiv:2006.05278. [Online]. Available: https://arxiv.org/abs/2006.05278, Accessed: Jul. 06, 2020.
[12] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self-supervised learning can improve model robustness and uncertainty,” 2019, arXiv:1906.12340. [Online]. Available: http://arxiv.org/abs/1906.12340, Accessed: Oct. 29, 2019.
[13] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization," 2021, arXiv:2104.04015. [Online]. Available: https://arxiv.org/abs/2104.04015, Accessed: Apr. 08, 2021.
[14] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.Y. Lin, E.D. Cubuk, Q.V. Le, and B. Zoph., “Simple copy-paste is a strong data augmentation method for instance segmentation,” 2020, arXiv:2012.07177. [Online]. Available: http://arxiv.org/abs/2012.07177, Accessed: Jun. 23, 2021.
[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” 2015, arXiv:1411.4038. [Online]. Available: https://arxiv.org/abs/1411.4038, Accessed: Mar. 08, 2015.
[16] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A.C. Berg, W.Y. Lo, and P. Dollár., “Segment anything,” 2023, arXiv.2304.02643. [Online]. Available: http://arxiv.org/abs/2304.02643, Accessed: Apr. 5, 2023.
[17] Ž. Ð. Vujovic, “Classification Model Evaluation Metrics,” IJACSA, vol. 12, no. 6, pp.599-606, 2021, doi: 10.14569/IJACSA.2021.0120670.
|