中文文獻
1.陳美伶. (2018). 行動生活加速邁向智慧國家發展. 台灣經濟論衡
2.巫沛倉, 廖紫柔, & 林薏昕. (2017). 同儕壓力、知覺風險、顧客滿意度之結構模式研究-以科技接受模式為中介變項. 管理資訊計算, 6(1), 146-156.
3.李巧琪. (2017). 以 UTAUT 探討 Instagram 社群購物行為之研究. (碩士), 國立高 雄應用科技大學, 高雄市.4.沈中華, 王儷容, & 蘇哲緯. (2020). 臺灣行動支付發展與歸類探討. 中央存款保險資訊季刊
5.周韻榕. (2020). 新冠肺炎對行動支付使用者習慣影響之研究. (碩士), 世新大學, 臺北市.6.林秀英. (2015). 風起雲湧的行動支付競賽. 臺灣經濟研究月刊, 38(5), 55-63.
7.林家年. (2018). 以延伸整合型科技接受模式與知覺風險探討行動支付的使用 – 以Apple Pay為例. (碩士), 國立交通大學, 新竹市.8.林錦郎, 卓麗香, & 張松山. (2018). 社群網站使用顧慮、隱私政策與行為意圖關聯性之研究. 全球商業經營管理學報(10), 23-36.
9.徐育邦. (2020). 消費者使用行動支付意願之研究. (碩士), 僑光科技大學, 台中市.10.翁晨語, & 黃惠萍. (2017). 以延伸整合型科技接受模式和數位生活型態探討 LINE TV 的使用行為. 資訊社會研究(33), 17-63.
11.馬晟喻. (2019). 行動支付獎勵回饋與使用者採用意願之研究-以知覺價值觀點探討. (碩士), 元智大學, 桃園縣.12.國家發展委員會. (2018). 107年個人/家戶數位機會調查報告.
13.許曉維. (2020). 消費者對零售商行動錢包使用意向之研究 -以PX PAY為例. (碩士), 國立臺灣科技大學, 台北市.14.陳威志. (2019). 以科技接受模式、系統品質、信任、便利性及知覺風險探討對消費者在行動支付使用意願影響之研究. (碩士), 龍華科技大學, 桃園縣.15.陳雪華. (2019). 個人創新對行動支付使用行為意圖之影響-以知覺樂趣性為干擾變項. (碩士), 國立彰化師範大學, 彰化縣.16.陳聖凱. (2020). 以科技接受模式探討消費者在行動支付上影響使用意圖之研究. (碩士), 國立臺北科技大學, 台北市.17.鄒佳妤. (2019). 探討行動支付之同儕壓力、知覺易用性、知覺有用性與使用意願關係-以Line Pay 為例. (碩士), 國立中興大學, 台中市.18.趙菩蓉. (2016). 使用者對行動支付行為意向之研究-便利性與風險性的外部影響. (碩士), 樹德科技大學, 高雄市.19.劉卉閔. (2020). 以信任及資訊系統成功模式探討消費者持續使用行動支付之影響因素. (碩士), 元智大學, 桃園縣.20.劉珮雯. (2020). 以科技接受模式探討消費者對行動支付的使用意願. (碩士), 靜宜大學, 台中市.21.劉璧瑩, 紀登元, & 鄭明松. (2019). 行動支付系統特徵, 使用誘因與消費者體驗價值之科技接受行為影響研究. 中原企管評論, 17(2), 21-42.
22.數位時代. (2021). 超過一半台灣人在用,電支市場有這兩大觀察!街口、Line Pay各自贏在哪?
23.蔡福隆. (2017). 電子支付帶動臺灣金融科技發展. 國土及公共治理季刊
24.羅嘉泳. (2019). 行動支付採用以信任移轉模式為基礎. (碩士), 淡江大學, 新北市.英文文獻
1.Antovski, L., & Gusev, M. (2003). M-payments. Paper presented at the Proceedings of the 25th International Conference on Information Technology Interfaces, 2003. ITI 2003.
2.Aslam, W., Ham, M., & Arif, I. (2017). Consumer behavioral intentions towards mobile payment services: An empirical analysis in Pakistan. Market-Tržište, 29(2), 161-176.
3.Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
4.Bertram, D. (2007). Likert scales. Retrieved November, 2(10).
5.Choi, H., Park, J., Kim, J., & Jung, Y. (2020). Consumer preferences of attributes of mobile payment services in South Korea. Telematics and Informatics, 51.
6.Dahlberg, T., Mallat, N., Ondrus, J., & Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181.
7.Dai, H., Salam, A. F., & King, R. (2008). Service convenience and relational exchange in electronic mediated environment: an empirical investigation.
8.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
9.de Sena Abrahão, R., Moriguchi, S. N., & Andrade, D. F. (2016). Intention of adoption of mobile payment: An analysis in the light of the Unified Theory of Acceptance and Use of Technology (UTAUT). RAI Revista de Administração e Inovação, 13(3), 221-230.
10.DeVellis, R. (1991). Scale development. Newbery Park: CA: Sage.
11.Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21(3), 719-734.
12.Dwivedi, Y. K., Rana, N. P., Tamilmani, K., & Raman, R. (2020). A meta-analysis based modified unified theory of acceptance and use of technology (meta-UTAUT): a review of emerging literature. Current opinion in psychology, 36, 13-18.
13.FIS company. (2020). Global Payment Report.
14.Gannamaneni, A., Ondrus, J., & Lyytinen, K. (2015). A post-failure analysis of mobile payment platforms. Paper presented at the 2015 48th Hawaii International Conference on System Sciences.
15.Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarterly, 51-90.
16.Hamed, E. B., & Berger, H. (2012). Shar'ia Compliant Electronic Payment Systems-Libyan Case Study. Paper presented at the UKAIS.
17.Hart, C. W. (2020). Spiritual lessons from the coronavirus pandemic: Springer.
18.Hayashi, F. (2012). Mobile payments: What's in it for consumers? Economic Review-Federal Reserve Bank of Kansas City, 35.
19.Heinze, J., Thomann, M., & Fischer, P. (2017). Ladders to m-commerce resistance: A qualitative means-end approach. Computers in Human Behavior, 73, 362-374.
20.Hew, J.-J., Lee, V.-H., Ooi, K.-B., & Lin, B. (2016). Mobile social commerce: The booster for brand loyalty? Computers in Human Behavior, 59, 142-154.
21.Iman, N. (2018). Is mobile payment still relevant in the fintech era? Electronic Commerce Research and Applications, 30, 72-82.
22.Karjaluoto, H., Shaikh, A. A., Saarijärvi, H., & Saraniemi, S. (2019). How perceived value drives the use of mobile financial services apps. International Journal of Information Management, 47, 252-261.
23.Kim, M., Kim, S., & Kim, J. (2019). Can mobile and biometric payments replace cards in the Korean offline payments market? Consumer preference analysis for payment systems using a discrete choice model. Telematics and Informatics, 38, 46-58.
24.Kooistra, J. (2018). Newzoo Global Mobile Market Report 2018.
25.Lee, J., Ryu, M. H., & Lee, D. (2019). A study on the reciprocal relationship between user perception and retailer perception on platform-based mobile payment service. Journal of Retailing and Consumer Services, 48, 7-15.
26.Liébana-Cabanillas, F., Japutra, A., Molinillo, S., Singh, N., & Sinha, N. (2020). Assessment of mobile technology use in the emerging market: Analyzing intention to use m-payment services in India. Telecommunications Policy, 44(9).
27.Liébana-Cabanillas, F., Marinkovic, V., de Luna, I. R., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130.
28.Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). The moderating effect of experience in the adoption of mobile payment tools in Virtual Social Networks: The m-Payment Acceptance Model in Virtual Social Networks (MPAM-VSN). International Journal of Information Management, 34(2), 151-166.
29.Liao, S.-H., & Yang, L.-L. (2020). Mobile payment and online to offline retail business models. Journal of Retailing and Consumer Services, 57.
30.Lim, S. H., Kim, D. J., Hur, Y., & Park, K. (2019). An empirical study of the impacts of perceived security and knowledge on continuous intention to use mobile fintech payment services. International Journal of Human–Computer Interaction, 35(10), 886-898.
31.Liu, J., Kauffman, R. J., & Ma, D. (2015). Competition, cooperation, and regulation: Understanding the evolution of the mobile payments technology ecosystem. Electronic Commerce Research and Applications, 14(5), 372-391.
32.Lu, Y., Yang, S., Chau, P. Y., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & management, 48(8), 393-403.
33.Madan, K., & Yadav, R. (2016). Behavioural intention to adopt mobile wallet: a developing country perspective. Journal of Indian Business Research.
34.McKnight, D. H., Choudhury, V., & Kacmar, C. (2002a). Developing and validating trust measures for e-commerce: An integrative typology. Information systems research, 13(3), 334-359.
35.Morosan, C., & DeFranco, A. (2016). It's about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17-29.
36.Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414.
37.Park, J., Ahn, J., Thavisay, T., & Ren, T. (2019). Examining the role of anxiety and social influence in multi-benefits of mobile payment service. Journal of Retailing and Consumer Services, 47, 140-149.
38.Patil, P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54.
39.Peters, M. A. (2020). Love and social distancing in the time of Covid-19: The philosophy and literature of pandemics: Taylor & Francis.
40.Priya, R., Gandhi, A. V., & Shaikh, A. (2018). Mobile banking adoption in an emerging economy. Benchmarking: An International Journal.
41.Sivathanu, B. (2019). Adoption of digital payment systems in the era of demonetization in India: An empirical study. Journal of Science and Technology Policy Management.
42.Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological methodology, 13, 290-312.
43.Sripalawat, J., Thongmak, M., & Ngramyarn, A. (2011). M-banking in metropolitan Bangkok and a comparison with other countries. Journal of computer information systems, 51(3), 67-76.
44.Teo, A.-C., Tan, G. W.-H., Ooi, K.-B., Hew, T.-S., & Yew, K.-T. (2015). The effects of convenience and speed in m-payment. Industrial Management & Data Systems.
45.Thakur, R., & Srivastava, M. (2014). Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Research.
46.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
47.Wilton, R. D., Páez, A., & Scott, D. M. (2011). Why do you care what other people think? A qualitative investigation of social influence and telecommuting. Transportation Research Part A: Policy and Practice, 45(4), 269-282.
48.Yan, L.-Y., Tan, G. W.-H., Loh, X.-M., Hew, J.-J., & Ooi, K.-B. (2021). QR code and mobile payment: The disruptive forces in retail. Journal of Retailing and Consumer Services, 58.
49.Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142.
50.Yuan, S., Ma, W., Kanthawala, S., & Peng, W. (2015). Keep using my health apps: Discover users' perception of health and fitness apps with the UTAUT2 model. Telemedicine and e-Health, 21(9), 735-741.
51.Zhou, T. (2012). Examining mobile banking user adoption from the perspectives of trust and flow experience. Information Technology and Management, 13(1), 27-37.