|
1.Busch, R. S., 2012, Healthcare Fraud, New Jersey: John Wiley & Sons, pp. 1-14. 2.Yang, W. S., 2003, “A Process Pattern Mining Framework for the Detection of Health Care Fraud and Abuse”, National Sun Yat-Sen University, Taiwan 3.Yang, W. S., and Hwang, S. Y., 2006, “A process mining framework for the detection of healthcare fraud and abuse”, Expert Systems with Applications, vol. 31, no. 1, pp. 56-68. 4.Buddhakulsomsiri, J., and Parthanadee, P., 2007, “Stratified random sampling for estimating billing accuracy in health care systems”, Health Care Management Science, vol. 11, no. 1, pp. 41-54 5.Tan, P. N., Steinbach, M. and Kumar, V., 2006, Introduction to Data Mining, New York: Pearson Addison-Wesley, pp. 157-164. 6.Aral, K. D., Güvenir, H. A., Sabuncuoglu, I. and Akar, A. R., 2012, “A prescription fraud detection model”, Computer Methods and Programs in Biomedicine, vol. 106, no. 1, pp. 37–46. 7.Rashidian, A., Joudaki, H. and Vian, T., 2012, “No evidence of the effect of the interventions to combat health care fraud and abuse: a systematic review of literature”, PLoS One, vol. 7, no.8, e41988. 8.Bolton, R. J., Hand, D. J., Provost, F., Breiman, L., Bolton, R. J. and Hand, D. J.,2002, “Statistical Fraud Detection: A Review Comment Comment Rejoinder”, Statistical Science, vol. 17, no. 3, pp. 235-255. 9.Thornton, D., van Capelleveen, G., Poel, M., van Hillegersberg, J. and Müller, R. M., 2014, “Outlier-based health insurance fraud detection for U.S. Medicaid data”, Proceedings of the 16th International Conference on Enterprise Information Systems, Lisbon, Portugal, pp. 684-694. 10.Trnka, A., 2010, “Six sigma methodology with fraud detection”, Proceedings of the 9th WSEAS International Conference on Data Networks, Communications, Computers, Faro, Portugal, pp. 162-165. 11.Hu, J., Wang, F., Sun, J., Sorrentino, R. and Ebadollahi, S., 2012, “A healthcare utilization analysis framework for hot spotting and contextual anomaly detection”, AMIA Annual Symposium Proceedings, pp. 360-369. 12.Bauder, R. A. and Khoshgoftaar, T. M., 2016, “A Novel Method for Fraudulent Medicare Claims Detection from Expected Payment Deviations”, 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), Pittsburgh, PA, USA 13.Liou, F.-M., Tang, Y.-C., and Chen, J.-Y., 2008, “Detecting hospital fraud and claim abuse through diabetic outpatient services”, Health Care Management Science, vol. 11, no. 4, pp. 353-358. 14.Farbmacher, H., Löw, L., and Spindler, M., 2020, “An explainable attention network for fraud detection in claims management”, Journal of Econometrics, vol. 228, no. 2, pp. 244-258. 15.Bauder, R. A., & Khoshgoftaar, T. M., 2017, “Medicare Fraud Detection Using Machine Learning Methods”, 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico 16.Ghuse, N., Pawar, P. and Potgantwar, A., 2017, “An Improved Approach for Fraud Detection in Health Insurance Using Data Mining Techniques”, Journal of Scientific Research in Network Security and Communication, vol. 5, no. 3, pp. 27-33. 17.Herland, M., Khoshgoftaar, T. M., and Bauder, R. A., 2018, “Big Data fraud detection using multiple medicare data sources”, Journal of Big Data, vol. 5, no. 1 18.Nelder, J.A. and Wedderburn, R.W.M., 1972, “Generalized Linear Models”, Journal of the Royal Statistical Society, Series A, vol. 135, no.3, pp. 370-384. 19.Friedman, Jerome H.,1991, “Multivariate Adaptive Regression Splines”, The Annals of Statistics, vol. 19, no. 1, pp. 1-67. 20.Breiman, L., Gordon, A. D., Friedman, J. H., Olshen, R. A., and Stone, C. J., 1984, “Classification and Regression Trees”, Computer Science, vol. 40, no. 3, pp. 874. 21.Breiman, L., 1996, “Bagging Predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140. 22.Breiman, L., 2001, “Random Forests”, Machine Learning, vol. 45, no. 1, pp. 5-32.
|