|
1.Fang, Y., Y. Nie, and M. Penny, Transmission dynamics of the COVID‐19 outbreak and effectiveness of government interventions: A data‐driven analysis. Journal of medical virology, 2020. 92(6): p. 645-659. 2.Neher, R.A., et al., Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. MedRxiv, 2020. 3.COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2022. 4.衛生福利部疾病管制署, 臺灣嚴重特殊傳染性肺炎(COVID 19)防疫關鍵決策網. 2020. 5.美国疾病控制与预防中心(CDC), Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). 6.Fennelly, K.P., Particle sizes of infectious aerosols: implications for infection control. The Lancet Respiratory Medicine, 2020. 8(9): p. 914-924. 7.美德醫療集團, 氣溶膠是甚麼?如何傳染?. 2021. 8.Guo, Y.-R., et al., The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military medical research, 2020. 7(1): p. 1-10. 9.Deng, S.-Q. and H.-J. Peng, Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. Journal of clinical medicine, 2020. 9(2): p. 575. 10.Katelaris, A.L., et al., Epidemiologic evidence for airborne transmission of SARS-CoV-2 during church singing, Australia, 2020. Emerging infectious diseases, 2021. 27(6): p. 1677. 11.Li, Y., et al., Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Building and Environment, 2021. 196: p. 107788. 12.陳潔, COVID-19病毒變身全解析. 2021. 13.Han, Z., W. Weng, and Q. Huang, Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of the Royal Society Interface, 2013. 10(88): p. 20130560. 14.Lindsley, W.G., et al., Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. Journal of occupational and environmental hygiene, 2012. 9(7): p. 443-449. 15.Jennison, M.W., ATOMIZING OF MOUTH AND NOSE SECRETIONS. Aerobiology, 1942. 17: p. 106. 16.Cox, C., Physical aspects of bioaerosol particles, in Bioaerosols handbook. 2020, CRC Press. p. 15-25. 17.Orr Jr, C. and M.T. Gordon, The density and size of air-borne Serratia marcescens. Journal of Bacteriology, 1956. 71(3): p. 315-317. 18.Wells, W., Aerodynamics of droplet nuclei. Airborne contagion and air hygiene, 1955: p. 13-19. 19.Fennelly, K.P., et al., Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. American journal of respiratory and critical care medicine, 2004. 169(5): p. 604-609. 20.Aliabadi, A.A., et al. CFD simulation of human coughs and sneezes: a study in droplet dispersion, heat, and mass transfer. in ASME International Mechanical Engineering Congress and Exposition. 2010. 21.余勇, 基于 DPM 的客车室内生物源性污染物扩散及控制仿真研究. 2014, 湖南工业大学. 22.Chaudhuri, S., et al., Modeling the role of respiratory droplets in Covid-19 type pandemics. Physics of Fluids, 2020. 32(6): p. 063309. 23.Das, S.K., et al., Transmission of airborne virus through sneezed and coughed droplets. Physics of Fluids, 2020. 32(9): p. 097102. 24.Motamedi, H., et al., CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies. Sustainable Cities and Society, 2022. 76: p. 103397. 25.Zhang, J., G. Wu, and L. Christianson, Full-scale experimental results on the mean and turbulent behavior of room ventilation flows. ASHRAE transactions, 1992. 98(pt 2): p. 307-318. 26.Chow, W.K., L.T. Wong, and K. Chan, Experimental studies on the airflow characteristics of air-conditioned spaces. ASHRAE Transactions, 1994. 100(1): p. 256-263. 27.Nielsen, P.V., Velocity distribution in a room ventilated by displacement ventilation and wall-mounted air terminal devices. Energy and Buildings, 2000. 31(3): p. 179-187. 28.Chen, Q., Computational fluid dynamics for HVAC: successes and failures. TRANSACTIONS-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING ENGINEERS, 1997. 103: p. 178-187. 29.Nielsen, P.V., The selection of turbulence models for prediction of room airflow. 1998. 30.Hinze, J., Turbulence. McGraw-Hill Publishing Co. New York, 1975. 31.Chou, P.Y., On velocity correlations and the solutions of the equations of turbulent fluctuation. Quarterly of applied mathematics, 1945. 3(1): p. 38-54. 32.Yakhot, V., et al., Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 1992. 4(7): p. 1510-1520. 33.Chen, Q., Comparison of different k-ε models for indoor air flow computations. Numerical Heat Transfer, Part B Fundamentals, 1995. 28(3): p. 353-369. 34.刘树森, 口腔散发微生物气溶胶在室内传播和运动规律的研究. 2007, 天津: 天津大学. 35.Talbot, L., et al., Thermophoresis of particles in a heated boundary layer. Journal of fluid mechanics, 1980. 101(4): p. 737-758. 36.Ferziger, J.H., M. Perić, and R.L. Street, Computational methods for fluid dynamics. Vol. 3. 2002: Springer. 37.Issa, R.I., Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of computational physics, 1986. 62(1): p. 40-65. 38.張顯輝, 空氣中傳染性飛沫傳播過程的數值模擬. 內蒙古科技大學, 2011.
|